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Introduction
Despite advancements in brain cancer treatment, conven-
tional therapies often face limitations such as achieving 
therapeutic efficacy while minimizing toxicity. Talimogene 
laherparepvec (T-VEC), the first and only U.S. Food and 
Drug Administration (FDA)-approved oncolytic virus for 
melanoma, was introduced over a decade ago.1 One ma-
jor challenge is ensuring precise drug delivery across the 
blood-brain barrier (BBB) while minimizing systemic toxic-
ity. Oncolytic viruses, genetically engineered to selectively 
replicate inside and destroy cancer cells, have emerged as 
a promising strategy in immunotherapy.2 In addition to lys-
ing tumor cells, these viruses can stimulate an immune re-
sponse, enhancing the body’s ability to recognize and attack 
malignancies.3 Meanwhile, nanoparticle-assisted drug deliv-
ery increases precision, improving therapeutic outcomes by 
optimizing drug release and targeting mechanisms.4 These 
strategies collectively improve drug delivery, reduce toxicity, 
and enhance therapeutic efficacy.5 The integration of these 
two approaches significantly expands the potential for pre-
cise, targeted, and immune-enhanced cancer therapy, offer-
ing a revolutionary step forward. To understand the potential 
synergy between these approaches, it is essential to exam-
ine their individual advancements and existing limitations.

Over the past two decades, oncolytic virotherapy has 
emerged as a promising approach in cancer treatment, lev-
eraging genetically modified viruses to specifically destroy 
tumor cells while sparing healthy tissue.6 Studies have 
demonstrated the ability of oncolytic viruses, such as her-
pes simplex virus and adenovirus derivatives, to enhance 
immune activation and improve tumor regression.7 Despite 
these advancements, limitations remain—such as inefficient 
systemic delivery, immune clearance, and the challenge of 
crossing the BBB in glioblastoma treatment.8 To address 
these challenges, nanoparticle-assisted drug delivery boosts 
virotherapy effectiveness by improving targeted delivery and 
reducing immune clearance. Nanoparticles have revolution-
ized drug delivery in oncology by improving pharmacokinet-
ics, enhancing drug stability, and enabling precise targeting 
of tumor sites.9

Although each technology has shown remarkable pro-
gress independently, research on their combined application 
in brain cancer treatment is still in its early stages.10 Few 
studies explore the synergistic effects of using herpes sim-
plex virus-1 oncolytic viruses encapsulated in nanoparticles 
for enhanced delivery and therapeutic outcomes, leaving a 
gap in the literature that warrants further investigation.

This literature review examines current advancements in 
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oncolytic virotherapy and nanoparticle-based drug delivery, 
assessing their potential synergy in enhancing drug deliv-
ery, immune response activation, and overcoming therapeu-
tic resistance in brain cancer. By synthesizing existing re-
search, identifying gaps, and evaluating future applications, 
this review provides a foundation for advancing integrative 
therapeutic strategies.

Methodological note
Numerous reviews and meta-analyses have been pub-
lished, especially in recent years, that synthesize clinical 
and nonclinical data collected over the last several dec-
ades, consistent with a 25-year timeframe (e.g., from the 
early 2000s or 1990s to the present). The field gained 
significant momentum following key genetic engineering 
advancements around the early 1990s, making a 25-year 
scope highly relevant for capturing the “modern era” of on-
colytic virus development.11

Examples of such reviews include:
•	 Articles that provide a comprehensive overview of onco-

lytic viruses, their mechanisms, modifications, and clini-
cal trial results, often covering research since the early 
2000s.

•	 Systematic reviews and meta-analyses that specifically 
collect data from numerous clinical trials to compare the 
safety and efficacy of different oncolytic virus treatments 
and combination therapies over an extended period.12

This type of review provides a valuable summary of the 
progress from early concepts to the development and FDA 
approval of the first oncolytic virus therapy (T-VEC in 2015), 
as well as ongoing research into combination therapies.13,14

Oncolytic virotherapy
Mechanisms & advancements
Oncolytic viruses represent a revolutionary breakthrough in 
cancer treatment, using genetically modified viruses to se-
lectively destroy tumor cells while simultaneously enhanc-
ing antitumor immunity through antigen release and inflam-
matory activation in the tumor microenvironment.15 Current 
research considers several viruses that naturally infect the 
brain, including but not limited to adenoviruses, herpes 
simplex viruses, varicella-zoster virus, and enteroviruses. 
T-VEC, the first and only FDA-approved oncolytic virus for 
melanoma, demonstrated the ability to selectively replicate 
inside tumor cells while triggering an immune response.1 
Research, including studies like these, has demonstrated 
a substantial impact on tumors and immune activation. 
By modifying viral genes, scientists have enhanced tumor 
specificity, reduced neurovirulence, and improved the pres-
entation of lysed cancer cells to immune cells, aiding tumor 
clearance.2 One study highlights how genetically engineered 
oncolytic viruses activate T cells, enhancing tumor regres-
sion and strengthening immune responses against malig-
nancies.16 Despite these successes, challenges such as 
immune clearance and systemic delivery obstacles still ex-
ist.17 These hurdles drive researchers to explore innovative 
solutions, including advanced drug delivery systems such as 
nanoparticles, intranasal methods, and gene therapy vec-
tors, among others.18 Despite these challenges, oncolytic 

virotherapy continues to be a promising cancer treatment. 
Incorporating nanoparticle-assisted drug delivery could en-
hance viral selectivity, improve BBB penetration, and opti-
mize therapeutic outcomes.
•	 Current preclinical findings: Preclinical research in nano-

therapy continues to show promising results, though ef-
ficacy in animal models does not always equate to human 
outcomes.19

•	 Targeted cancer therapies: Studies frequently demon-
strate that targeted nanocarriers, such as antibody-con-
jugated or ligand-functionalized nanoparticles, can at-
tenuate tumor growth and improve outcomes in murine 
models. These systems improve drug accumulation at 
the tumor site and minimize off-target effects compared 
to free drugs.

•	 Immunotherapy enhancement: Nano-formulations are 
used as adjuvants or carriers to enhance the efficacy of 
immunotherapeutic agents by improving their solubility 
and enabling sustained, targeted release in the tumor mi-
croenvironment.

•	 Triggered release systems: Responsive nanoparticles 
(e.g., pH-sensitive or redox-responsive) are being investi-
gated in preclinical studies to release drugs “on demand” 
in the specific tumor microenvironment, showing effective 
control over drug release and reduced systemic toxicity in 
animal models.20

•	 However, nanotherapy faces several challenges in trans-
lation from the laboratory to the clinic, including biologi-
cal barriers, manufacturing issues, and a lack of specific 
regulatory guidelines. While preclinical studies show im-
mense potential for targeted drug delivery and enhanced 
efficacy, clinical adoption is hampered by the complexity 
of biological interactions and the need for rigorous long-
term safety data.21,22

•	 Regulatory challenges: Regulatory challenges are a sig-
nificant hurdle to nanotherapy commercialization and 
widespread clinical use.22

Lack of specific guidelines: There is generally a lack of 
standardized, comprehensive regulatory guidelines (from 
agencies such as the FDA and European Medicines Agen-
cy) tailored specifically to nanomedicine, which has phys-
icochemical properties distinct from conventional medicines. 
Products are often assessed using existing frameworks for 
generic products, which may be inadequate.

Safety and toxicity assessment: The unique size and high 
surface reactivity of nanoparticles make their interactions 
with biological systems complex and not fully understood. 
Predicting long-term toxicity, immunogenicity, and biodistri-
bution (accumulation in organs such as the liver or spleen) 
from preclinical studies is difficult, as animal models often do 
not accurately predict human immune responses.
•	 Manufacturing and quality control: The complex nature of 

nanoparticles makes large-scale manufacturing difficult, 
leading to potential batch-to-batch inconsistencies in size, 
surface charge, and drug loading. Ensuring a consistent, 
sterile, and stable product presents major quality control 
challenges that regulatory bodies scrutinize heavily.

•	 Bioequivalence issues: Demonstrating bioequivalence for 
follow-on or generic versions of approved nanomedicines 
(e.g., liposomal doxorubicin) is difficult due to the complex 
characterization required, necessitating extensive analyti-
cal, nonclinical, and clinical data.
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•	 Cost and accessibility: High research and development 
and manufacturing costs contribute to the high price of 
nanotherapeutics, limiting accessibility, especially in low- 
to middle-income countries, and raising ethical questions 
about equitable access to advanced therapies.23

•	 Realistic translational pathways: Realistic translational 
pathways for nanotherapy focus on practical applications 
that leverage the unique properties of nanoparticles while 
carefully managing inherent challenges.24

•	 Enhanced drug solubilization and bioavailability: Nano-
carriers can significantly improve the solubility and stabil-
ity of hydrophobic drugs, leading to better bioavailability 
and therapeutic outcomes. This is a primary, pragmatic 
application that has already seen clinical success (e.g., 
Abraxane, a nanoparticle albumin-bound paclitaxel).
Passive targeting via the enhanced permeability and 

retention effect: In cancer therapy, the enhanced permea-
bility and retention effect, whereby nanoparticles accumulate 
in leaky tumor vasculature, remains a primary mechanism 
for passive targeting. Strategies leveraging this effect, com-
bined with imaging technologies to confirm accumulation, 
are a major focus of current translation efforts.
•	 Overcoming biological barriers (e.g., BBB): Nanoparticles 

are being engineered with specific ligands to cross dif-
ficult biological barriers, such as the BBB. This has strong 
potential for treating central nervous system diseases and 
brain tumors, where conventional drugs often fail to reach 
the target site at therapeutic concentrations.

•	 Vaccine development: Lipid nanoparticles have been 
highly successful in mRNA vaccines (e.g., the Pfizer and 
Moderna COVID-19 vaccines), demonstrating a clear and 
rapid translational pathway in the field of vaccinology and 
gene therapy.24

Challenges & limitations of oncolytic virotherapy
Despite significant advancements in oncolytic viruses, 
challenges such as immune clearance, systemic delivery 
inefficiencies, and therapeutic resistance continue to hin-
der their effectiveness and increase toxicity, limiting wide-
spread adoption.25 Ongoing research faces additional 
limitations, including poor oncolytic virus penetration into 
tumors, short persistence, and host antiviral immune re-
sponses, all of which impede the clinical translation of on-
colytic virotherapy.15 Drug delivery remains a major hurdle 
for oncolytic viruses, involving challenges such as biologi-
cal barriers, stability and solubility issues, off-target effects, 
and the balance between safety and efficacy in systemic 
administration and absorption. In brain-specific drug de-
livery, therapies encounter biological barriers such as the 
BBB, often losing efficacy before reaching the target site. 
This imbalance between safety and efficacy leads to off-
target effects and limited absorption.25,26 These challeng-
es have sparked growing interest in alternative delivery 
methods, such as nanomedicine, to enhance targeting ef-
ficiency. A major limitation of oncolytic viruses is immune 
clearance, whereby the host immune system rapidly de-
tects and eliminates viral particles before they achieve full 
therapeutic effect.27 Although strategies such as immune 
suppression or genetic modifications have been explored 
to delay clearance, they pose risks of adverse effects, leav-
ing challenges unresolved. The immunosuppressive tumor 
microenvironment presents another obstacle to effective 

oncolytic virotherapy, preventing robust immune activation 
and limiting viral replication within tumors.8

Researchers have attempted to overcome this by inte-
grating cytokines such as granulocyte-macrophage colo-
ny-stimulating factor or interleukin-12 to stimulate immune 
responses, yet optimizing this approach remains an obsta-
cle. Given these challenges, integrating advanced delivery 
mechanisms—such as nanoparticles—into oncolytic viro-
therapy presents a promising strategy for improving thera-
peutic outcomes in brain cancer treatment.

Lack of systematic studies required for regulatory
Submissions: The FDA reviews efficacy and safety data for 
various drug products (small molecules, biologics, nucleic 
acids), medical devices, and combination products.28 As of 
January 20, 2020, the FDA released five guidance docu-
ments for industry to express the Agency’s view of cosmetic, 
veterinary, and human pharmaceutical products containing 
nanotechnology.29 Currently, products containing nanoma-
terials are regulated according to the safety and efficacy 
regulatory framework established for other drug products, 
but with some nuances. For example, if a nanotechnology 
product contains both small-molecule drugs and biologics, 
then the studies required for drugs and for biologics would 
both have to be undertaken to characterize that nanomateri-
al.28 The FDA has a series of indication- and product-specific 
guidance documents for gene therapies.30 However, specific 
guidance recommendations for nucleic acid nanoparticles 
(NANPs) are not yet among these documents. Bioavailabil-
ity, barrier penetration, in vivo delivery, and unwanted toxicity 
create safety concerns that are among the major obstacles 
preventing the field from entering clinical stages. Studies in-
vestigating NANP absorption, distribution, metabolism, ex-
cretion, and toxicity (ADME/Tox), as well as understanding 
clearance rates and safety in rodent and non-rodent spe-
cies, are needed prior to clinical studies.

These barriers can be eliminated by (i) developing NANP-
based formulations targeted to organs and tissues other 
than the liver (i.e., extrahepatic targeting of NANPs); (ii) 
sensing and actuation for improving the therapeutic index; 
(iii) performing in vivo studies in rats and dogs or non-human 
primates and comparing the findings with those from tradi-
tional nucleic acid therapeutics; (iv) organizing seminars and 
workshops between academic and industrial researchers 
working on RNA and DNA NANPs and regulatory scientists; 
and (v) promoting FDA reviewers’ interaction with, and provi-
sion of guidance to, academic investigators regarding study 
design for ADME/Tox and the immunological safety of drug 
products and vaccines.

Inefficient communication between stakeholders: The gap 
in communication between clinicians and nanotechnologists 
further delays the understanding and timely identification of 
important therapeutic challenges. This barrier may be re-
duced or eliminated by the following activities: (i) creating 
non-monetary incentives for clinicians to present achievable 
webinars on unmet needs in particular therapeutic areas; (ii) 
creating forums for clinicians and scientists to brainstorm 
ideas and discuss potential collaborations; and (iii) initiating 
new funding opportunities to drive these translational col-
laborations. In each of these cases, an overarching need for 
academic researchers and basic scientists involved in NANP 
studies is to demonstrate both clear efficacy and translation-
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al capability for the Valley of Death to be crossed. Whereas 
traditional funding mechanisms and academic publication 
rewards are well-suited to the former, they are not typically 
oriented toward supporting the latter. Moreover, academic 
researchers are not typically trained, equipped, or financially 
supported for translation, which will require a new, collabora-
tive model to emerge for NANPs to translate successfully to 
the clinic in the near future.

Nanoparticle-assisted drug delivery in neuro-
logical disorders
Nanoparticles have revolutionized drug delivery across vari-
ous regions of the body, including the brain. They offer en-
hanced precision, stability, and bioavailability, overcoming 
formidable challenges such as BBB permeability and other 
physiological barriers.31 Traditional drug delivery systems, 
such as oral administration, parenteral administration, di-
rect injection, and intranasal delivery, pose significant risks 
and adverse effects. They also struggle to effectively reach 
target sites, particularly the brain. Advances in nanoparticle 
technology offer unparalleled precision by facilitating exact 
drug transport while minimizing systemic toxicity.32

Nanoparticles encapsulate therapeutic agents, ensuring 
precise drug delivery while minimizing toxicity. Their effica-
cy is further enhanced through receptor-ligand binding.33 A 
study by Abaidullah et al.4 showed that polymeric nanoparti-
cles significantly enhanced drug penetration across the BBB 
in glioblastoma treatment, leading to improved therapeutic 
efficacy and reduced systemic adverse effects.4 Despite their 
potential, nanoparticles face challenges such as unpredict-
able immune responses, formulation complexity, and regula-
tory hurdles. These obstacles must be addressed through 
further research before widespread clinical adoption.5 While 
nanoparticles offer a promising solution for overcoming neu-
rological drug delivery challenges, their integration with on-
colytic virotherapy could further enhance treatment specific-
ity, efficacy, and immune activation in brain cancer therapy.

Synergistic potential of oncolytic viruses & 
nanoparticles
Integrating nanoparticle-based drug delivery with oncolytic 
virotherapy offers a promising strategy for overcoming key 
therapeutic challenges faced by oncolytic viruses, enhanc-
ing precision, minimizing off-target effects, and improving tu-
mor targeting. Nanoparticles enhance viral delivery by serv-
ing as protective carriers, shielding therapeutic agents from 
immune detection and premature clearance.5 Additionally, 
they address systemic delivery inefficiencies by ensuring 
precise localization through receptor-ligand binding.34 Na-
noparticles are engineered to cross vascular barriers, such 
as the BBB, enabling systemic administration while avoid-
ing harm to healthy cells and minimizing off-target effects.31 
Encapsulation preserves drug efficacy until it reaches the 
intended location.35 Stability, solubility, and absorption limi-
tations are further mitigated by nanoparticle coatings, im-
proving drug bioavailability.36 By delivering oncolytic viruses 
directly to tumors while enhancing immune activation, na-
noparticle-assisted virotherapy can improve primary tumor 
destruction and systemic immune surveillance, thereby re-

ducing recurrence risks.37 While preliminary studies indicate 
improved therapeutic outcomes, research on herpes simplex 
virus-1-encapsulated nanoparticles remains underdevel-
oped, highlighting a critical gap for further investigation.38 
The potential synergy between oncolytic virotherapy and 
nanoparticle-assisted drug delivery underscores the neces-
sity for continued research to refine formulations, enhance 
clinical translation, and establish long-term efficacy in brain 
cancer treatment.

Table 1 is presented to summarize the oncolytic viruses 
that are approved or under investigation for brain cancer 
(specifically high-grade gliomas/glioblastoma). Note that 
only a few oncolytic viruses are approved anywhere in the 
world, and most are in clinical trials.39,40–50

Research gaps & future directions
Although integrating oncolytic virotherapy with nanoparticle-
assisted drug delivery presents a promising strategy for 
brain cancer treatment, several research gaps must be ad-
dressed to optimize efficacy, safety, and clinical scalability, 
as emerging challenges persist. Tumor evolution may lead 
to drug resistance, but the aggressively replicative nature of 
viruses offers a potential mechanism for controlling tumor 
growth, not only in fragile regions like the brain but also in 
other affected areas. Other limitations of this review involve 
low single-agent efficacy, difficulty in predicting patient re-
sponse, the need for GMP production, and determining the 
optimal timing for combination therapies.51

Future studies should focus on suppressing the immune-
suppressive tumor microenvironment, improving drug bio-
availability, and addressing therapeutic resistance. Experi-
mentation with cytokines and genetic modifications may 
enhance safety and efficacy while minimizing toxicity. Suc-
cessful clinical translation of nanoparticle-assisted virother-
apy requires rigorous preclinical testing to evaluate biocom-
patibility, immune interactions, and regulatory approval.52 
Advancements in nanoparticle engineering and synthetic 
virology hold the potential to refine brain cancer treatments, 
paving the way for precise, scalable, and effective therapeu-
tic interventions. Addressing these critical gaps will unlock 
new opportunities for highly targeted, immune-enhanced 
cancer therapies, driving a transformative shift in oncology.

The integration of oncolytic virotherapy and nanoparticle-
assisted drug delivery presents a groundbreaking approach 
to brain cancer treatment, offering enhanced tumor speci-
ficity, improved immune activation, and greater therapeutic 
precision (Fig. 1).

While both technologies have demonstrated significant 
advancements independently, their combined application 
remains underexplored, leaving a critical gap in current re-
search. Future research must address this gap by refining 
viral selectivity, strengthening immune response activation, 
and ensuring precise drug delivery through nanoparticle 
encapsulation. Although this approach is promising, further 
studies on formulation optimization, immune interactions, 
and large-scale clinical translation are essential to refine and 
validate its efficacy. Since several molecular mechanisms 
of chemoresistance characterize glioblastoma, developing 
dynamically targeted nanoparticles to surface cell markers, 
signaling pathways, and the tumor microenvironment poses 
an exciting and demanding possibility.



Nat Cell Sci 2025;3(4):e00027 
https://doi.org/10.61474/ncs.2025.00027

Nature Cell and Science | www.cellnatsci.com 5

Solid lipid nanoparticles have emerged as a promising ve-
hicle for delivering therapeutic agents across the BBB, offer-
ing a range of advantages such as controlled drug release, 
extended circulation within the bloodstream, precise target-
ing, and reduced potential for toxicity. Notably, researchers 
have made significant strides in this field, with the develop-
ment of lipid-coated mesoporous silica nanoparticles modi-
fied with Angiopep-2 for treating gliomas.

Another point that should be considered is the difference 
between systemic and intratumoral delivery in central nerv-
ous system cancers. Systemic delivery involves administer-
ing drugs intravenously to reach the entire body, including the 
brain, but is limited by the BBB, which restricts the passage 
of most drugs. Intratumoral delivery directly injects drugs into 
the tumor, bypassing the BBB to achieve higher concentra-

tions at the tumor site and reducing systemic adverse effects. 
Intratumoral delivery is often more effective for brain tumors 
because it increases local drug concentration and can be 
less toxic to healthy tissues. There are, however, additional 
comparative advantages over other emerging combinatorial 
modalities (e.g., nanoparticle-assisted immunotherapy or 
gene therapy). Compared with other combinatorial modali-
ties, such as nanoparticle-assisted immunotherapy or gene 
therapy alone, a major advantage is the ability to achieve 
synergistic effects by combining delivery precision with a 
therapeutic mechanism. For instance, nano-immunotherapy 
can overcome the limitations of each individual approach by 
using nanoparticles to deliver immunotherapies more pre-
cisely, thereby increasing their effectiveness against tumors 
and potentially correcting genetic defects. Therefore, it ap-

Table 1.  Oncolytic viruses approved and under investigation for brain cancer

Oncolytic virus Viral 
backbone

Approval status 
(region) Cancer target Key features Reference(s)

Teserpaturev 
(Delytact®)

Herpes sim-
plex virus-1 
(HSV-1)

Approved (Ja-
pan, conditional)

Recurrent glio-
blastoma (GBM)

Triple-mutated HSV-1 
(G47Δ) that replicates se-
lectively in cancer cells

41

IMLYGIC® (tali-
mogene laher-
parepvec, T-VEC)

HSV-1 Approved 
(US, Europe, 
Australia)

Melanoma 
(advanced)

Not approved for brain 
cancer, but globally ap-
proved as oncolytic virus

42

Oncorine (H101/
ONYX-015)

Adenovirus Approved 
(China)

Head and 
neck cancer

Not approved for brain 
cancer, but globally ap-
proved as oncolytic virus

43

DNX-2401 (tasa-
denoturev)

Adenovirus 
(Δ24-RGD)

Under investiga-
tion (Phases I/II)

High-grade glio-
ma (HGG), diffuse 
intrinsic pontine 
glioma (DIPG)

Engineered to replicate 
in tumor cells with dys-
functional Rb pathway

44

Poliovirus Sabin 
and RIPO for Rhi-
novirus IRES Polio-
virus Open reading 
frame (PVS-RIPO)

Poliovirus 
chimera

Under investiga-
tion (Phase II)

Recurrent GBM A non-pathogenic recombi-
nant poliovirus variant that 
targets the CD155 receptor, 
overexpressed on GBM cells

45

G207 HSV-1 Under investiga-
tion (Phases I/II)

Recurrent ma-
lignant glioma, 
cerebellar tumors

A second-generation HSV that 
has shown safety and radio-
graphic responses, particularly 
in combination with radiation

46

CAN-3110 
(rQNestin34.5v.2)

Herpes sim-
plex virus-1 
(HSV-1)

Under investiga-
tion (Phase I)

Recurrent high-
grade glioma

Received U.S. Food and Drug 
Administration (FDA) Fast 
Track designation. Its effec-
tiveness is linked to nestin 
expression in cancer cells

47

Reolysin 
(pelareorep)

Reovirus Under investiga-
tion (Phase I)

Malignant glioma, 
brain metastasis

A wild-type reovirus that 
selectively targets tumor cells 
with an activated Ras pathway

48

Toca 511 (vo-
cimagene amiret-
rorepvec)

Retrovirus Under investiga-
tion (Phases I/II)

Recurrent high-
grade glioma

Engineered to convert 
the prodrug 5-fluorocyto-
sine (5-FC) into the potent 
chemotherapy 5-fluorouracil 
(5-FU) locally in the tumor

49

H-1 parvovirus Parvovirus 
(rodent 
origin)

Under in-
vestigation 
(Phases I/IIa)

Recurrent GBM No pre-existing immu-
nity in humans, which is 
a potential advantage

50
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pears that integrating virotherapy with precision drug deliv-
ery marks a significant innovation that could redefine cancer 
treatment strategies and enhance patient outcomes globally.

Conclusions
This review is an excerpt from scientific publications that dis-
cusses the challenges and potential benefits that may be 
obtained from combining nanomedicine and viral therapy in 
neuro-oncology. While we have highlighted the progress that 
has been made in this area, clinical application is still limited 
due to many key challenges, like Delivery inefficiencies, Im-
mune clearance, and Safety concerns. Overall, it concludes 
by emphasizing the need for further research with combi-
national approach to redefine the treatment paradigms and 
improve the prognosis of brain cancer.
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