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Abstract

Retinal degenerative diseases (RDDs) represent a broad group of disorders characterized by the progressive loss of reti-
nal structure and function, most notably the death of photoreceptors and retinal pigment epithelial cells. These disorders
encompass hereditary conditions caused by monogenic or polygenic mutations, such as retinitis pigmentosa, Stargardt
disease, and Leber congenital amaurosis, as well as non-hereditary forms caused mainly by environmental factors and
aging, the most notable of which is age-related macular degeneration. RDDs are complex disorders driven by a conver-
gence of genetic, epigenetic, inflammatory, and proteostatic mechanisms. This review explores the multifaceted molecular
underpinnings of retinal degeneration, with particular emphasis on the dynamic crosstalk between DNA methylation, non-
coding RNAs, oxidative stress, mitochondrial dysfunction, chronic inflammation, and protein misfolding. We also highlight
the pathogenic roles of microglial activation, endoplasmic reticulum stress, and impaired autophagy, in addition to vascular
and extracellular matrix disruptions. Current therapeutic strategies focus on gene editing, epigenetic modulators, antian-
giogenic therapies, and stem cell transplantation, all of which have shown promise in clinical trials. However, challenges
such as disease heterogeneity, limitations in preclinical models, and immune rejection continue to hinder the translation of
these therapies to clinical practice. Future research must integrate single-cell multi-omics, organoid models, and artificial
intelligence to better understand the cellular heterogeneity and mechanistic interplay of disease processes. This will be
crucial for advancing precision medicine and developing multi-target combinatorial interventions. The objective of this
review is to summarize recent advances in the molecular mechanisms of RDDs and to highlight emerging therapeutic
strategies that may guide future research and clinical translation.
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Organoid models.

Introduction

Retinal degenerative diseases (RDDs) involve the gradual
deterioration of vision due to the progressive loss of retinal
neurons, photoreceptors, and the underlying retinal pigment
epithelium (RPE) (Fig. 1). Given the limited regenerative po-
tential of the adult mammalian retina, the death of these cells
often leads to irreversible visual deficits. Prominent RDDs
include age-related macular degeneration (AMD), retinitis
pigmentosa (RP),% and Stargardt’s disease.? To develop ef-
fective therapeutic approaches, significant efforts have been
devoted to elucidating the genetic and molecular mecha-
nisms underlying these pathological processes. These ef-

forts highlight that the progression of these diseases results
from complex interactions among genetic, epigenetic, meta-
bolic, and microenvironmental factors.

Genetic mutations and epigenetic changes jointly dis-
rupt retinal homeostasis, leading to progressive visual im-
pairment. To date, more than 330 disease-causing genes
have been identified in multiple RDD phenotypes (RETNET;
https://retnet.org, accessed on June 28, 2025). The proper
function of retinal cells relies on genes such as UBAP1L,
ALG6, and IDH3G.*% In addition to monogenic mutations,
polygenic influences play a substantial role, with the cumula-
tive effect of multiple risk alleles modulating disease onset
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Fig. 1. Retinal structure and degeneration in retinal degenerative diseases (RDDs). (a) Conceptual diagram of cell types and their distri-
bution in the normal human retina. (b) Schematic representation of end-stage inherited retinal degeneration, depicting complete photoreceptor
loss with relative preservation of the inner retinal layers. IRD, Inherited retinal diseases; RPE, retinal pigment epithelium.

and progression.”~2 Epigenetic modifications, including DNA
methylation, histone modifications, and non-coding RNA
regulation, add another layer of complexity.’® These herit-
able yet reversible changes in gene expression offer deeper
insights into the dynamic epigenetic landscape of the retina.
Furthermore, genetic predispositions may combine with en-
vironmental stressors such as smoking, ultraviolet radiation,
and air pollution-induced oxidative stress to increase the risk
of disease development.!

Oxidative stress and mitochondrial dysfunction are central
to retinal degeneration.'2'3 The high metabolic activity of the
retina makes it susceptible to the accumulation of reactive
oxygen species (ROS), which can trigger cellular damage
like mitochondrial dysfunction. Mitochondrial dysfunction
exacerbates ROS production, creating a feedback loop that
accelerates photoreceptor cell death.'® Inflammation and im-
mune dysregulation also play pivotal roles, with microglial
activation, peripheral immune cell infiltration, and cytokine
network dysregulation disrupting retinal homeostasis.'*
Additionally, protein misfolding and endoplasmic reticulum
(ER) stress activate the unfolded protein response (UPR),
which can turn from protective to pro-apoptotic under chronic
stress.'>17 Impaired autophagy and ubiquitination further
contribute to the accumulation of misfolded proteins and cel-
lular stress. 819 Vascular abnormalities and extracellular ma-
trix (ECM) changes are also key factors, with studies show-
ing significant microvascular degeneration and ECM protein
expression changes in RDDs.202" Qverall, these molecular
mechanisms highlight the multifactorial nature of RDDs and
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provide potential targets for therapeutic intervention.

In recent years, significant progress has been made in
cell-based therapies, pharmacological interventions, gene
therapy, and regenerative medicine. Pharmacological in-
terventions play a crucial role in managing retinal degen-
eration by targeting the underlying molecular mechanisms.
Major developments include the evolution of anti-vascular
endothelial growth factor (anti-VEGF) agents, the investi-
gation of repurposed drugs with neuroprotective potential,
and the optimization of targeted intraocular drug delivery
systems.?2-24 Advances in gene therapy vectors and deliv-
ery methods have opened new possibilities for treating and
potentially curing RDDs.?5 Furthermore, advances in stem
cell technologies and bioengineering have brought cellular
therapies closer to clinical application,26-2° although chal-
lenges such as immune compatibility and functional integra-
tion still persist.3%3" Overall, these therapeutic approaches
offer promising avenues for addressing previously untreat-
able retinal disorders.

A central objective of this review is to scrutinize the lat-
est fundamental investigations and clinical trials related to
retinal degeneration published in recent years, reflecting
the field’s rapid progress. We investigated the molecular
mechanisms underlying retinal degeneration (Fig. 2), as-
sessed current and emerging treatment approaches (Fig.
3), and analyzed the obstacles to translating these ther-
apies from the laboratory to clinical practice. This review
aims to provide a comprehensive and clear overview of the
current status of RDDs.
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Fig. 2. Schematic illustration of the molecular mechanisms underlying retinal degenerative diseases (RDDs). The diagram summarizes
the principal molecular pathways implicated RDDs, including genetic and epigenetic alterations, oxidative stress and mitochondrial dysfunction,
dysregulated inflammation and immunity, protein misfolding with endoplasmic reticulum (ER) stress and autophagy imbalance, and vascular
and extracellular matrix abnormalities. ERS, endoplasmic reticulum stress; ROS, reactive oxygen species.

Molecular mechanisms

Genetic and epigenetic factors

RDDs, including AMD and RP, are multifactorial disorders in
which genetic mutations and epigenetic dysregulation jointly
disrupt retinal homeostasis and drive progressive visual im-
pairment.3233 Extensive genetic studies have pinpointed key
genes associated with these conditions. For instance, Ullah
et al.® demonstrated that biallelic loss-of-function variants
in UBAP1L are implicated in human nonsyndromic retinal
dystrophies. Monson et al.® reported that the ALG6 variant
is correlated with increased severity of macular cone dys-
function but milder peripheral rod involvement. Bianco et al.*
reported that IDH3G, which encodes the y-subunit of mito-
chondrial isocitrate dehydrogenase and is expressed in pho-
toreceptor inner segments, is a new candidate for X-linked
RP. In addition to these monogenic mutations, polygenic in-
fluences play a substantial role in retinal degeneration. The
cumulative impact of multiple risk alleles can modulate both
the onset and progression of the disease, emphasizing the
importance of rare and common variants alike.”® Gorman
et al.” combined data from the Million Veteran Program and
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five other cohorts to conduct pioneering multi-ancestry AMD
genome-wide association studies, discovering 63 loci in to-
tal, 30 of which were novel.

Epigenetic modifications are equally significant in the
pathogenic process. These are heritable yet reversible
changes in gene expression that occur without altering
the underlying DNA sequence. Such modifications include
DNA methylation, histone modifications, and regulation by
noncoding RNAs. Wabhlin et al.34 initially reported irregular
DNA methylation levels in the rd1 mouse model of RP. At
timepoints corresponding to the peak of rod cell death, both
rod and cone photoreceptors in the rd1 retina displayed
heightened immunoreactivity for 5mC and 5hmC relative
to wild-type controls. Recent progress in high-throughput
sequencing and epigenomic profiling has provided a more
profound understanding of the dynamic epigenetic land-
scape of the retina. Advani et al.3% carried out integrated
RNA sequencing and DNA methylation array analyses on
160 human retinal samples, identifying 37,453 methylation
QTLs and 13,747 DNA methylation sites that influence gene
expression. Summary data-based Mendelian randomiza-
tion and colocalization analyses revealed 87 target genes
whose methylation and gene expression changes likely af-

www.cellnatsci.com 3



Nat Cell Sci 2025;3(3):e00021
https://doi.org/10.61474/ncs.2025.00021

Gene therapy and
molecular approaches

2

Cell-based
approaches

« B

eed

Pharmacological interventions

Complementary
therapies

Retinal prostheses

b \
OF @ ‘,,“"‘
[~ ¢ Yo ol

Optogenetics

Fig. 3. Schematic representation of therapeutic strategies for retinal degenerative diseases (RDDs). The diagram depicts the primary
treatment modalities for RDDs, including pharmacological treatments, gene- and molecular-based strategies, cell therapy approaches, retinal
prosthetic devices, optogenetic interventions, and complementary therapeutic measures.

fect the genotype of AMD. Histone modifications present an
extra regulatory tier by adjusting chromatin structure and
swaying transcription factor access to gene promoters. For
example, dysregulation of EZH2 (a catalytic component of
polycomb repressive complex 2) activity is correlated with
abnormal cell cycle progression and apoptosis in retinal
cells. Moreover, changes in histone acetylation patterns are
connected to the repression of neuroprotective genes and
the aggravation of inflammatory pathways.3¢ Moreover, the
homeostasis of non-coding RNAs is vital for the maturation
and survival of different retinal cells, as well as for main-
taining the normal structure and function of the retina. For
example, miR-20b restrains photoreceptor cell proliferation
and development and promotes apoptosis by targeting fi-
broblast growth factor 2 and growth factor receptor-bound
protein 2 through the mitogen-activated protein kinase/ex-
tracellular signal-regulated kinase (MAPK/ERK) pathway.3”
MiR-210 is essential for retinal cell integrity and survival,
and its absence triggers retinal degeneration.3® MiR-210
also regulates lipid metabolism by targeting acetyl-CoA
synthase, thereby preventing neurodegeneration in the
Drosophila retina.?® Let-7a/miR-125b,%0 miR-20b/106a,
and miR-204/211 play roles in promoting the maturation
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and differentiation of RPE cells.*"

The interaction between genetic mutations and epigenetic
modifications is an emerging concept of great importance.
Environmental stressors, such as smoking, ultraviolet ra-
diation, and air pollution-induced oxidative stress, can work
together with genetic predispositions to increase the risk
of disease onset and development.!’ For example, muta-
tions in photoreceptor-specific genes are often associated
with altered methylation patterns that further inhibit gene
expression, thereby accelerating degeneration.*243 On the
other hand, preclinical models have shown that epigenetic
therapies aimed at reversing these maladaptive modifica-
tions hold promise, highlighting the therapeutic potential of
targeting epigenetic dysregulation in retinal degeneration.**

Oxidative stress and mitochondrial dysfunction

Retinal degeneration arises from a complex interplay be-
tween oxidative stress and mitochondrial dysfunction, both
of which critically compromise retinal cell survival (Fig. 4).
The retina, characterized by high metabolic activity and oxy-
gen consumption, is especially susceptible to the accumu-
lation of ROS, which can trigger lipid peroxidation, protein
oxidation, and DNA damage.'® When pathological condi-
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‘ Mitochondrial dysfunction

Fig. 4. Oxidative stress and mitochondrial dysfunction compromise retinal cell survival. The conceptual diagram depicts the intricate
crosstalk between oxidative stress and mitochondrial dysfunction during retinal degeneration, which collectively compromises cell survival. ATP,
adenosine triphosphate; ETC, electron transport chain; mtDNA, mitochondrial DNA; ROS, reactive oxygen species.

tions cause ROS production to exceed the capacity of the
retina’s endogenous antioxidant defenses, retinal apoptosis
is initiated.4®> Mitochondria, which are central to both adeno-
sine triphosphate generation via oxidative phosphorylation
and ROS production, play a key role in this process.*6 Under
normal conditions, a small amount of electron leakage from
the electron transport chain leads to low-level ROS forma-
tion.*” However, in the context of retinal degeneration, mi-
tochondrial dysfunction—characterized by impaired electron
transport, diminished adenosine triphosphate production,
and increased electron leakage—significantly elevates ROS
generation.*849 Additionally, chronic oxidative stress upregu-
lates the expression of the fission protein dynamin-related
protein 1 and downregulates the fusion-related protein optic
atrophy 1, leading to mitochondrial fragmentation, leading
to mitochondrial fragmentation. This disruption of the mi-
tochondrial network integrity facilitates the release of cyto-
chrome ¢ and other proapoptotic factors, thereby increasing
the likelihood of apoptosis.®°

Mitophagy, the selective removal of damaged mitochon-
dria via autophagy, is essential for mitigating mitochondrial
dysfunction.'? Under physiological conditions, mitophagy
preserves mitochondrial quality and function. However, in
retinal degeneration, excessive ROS and mitochondrial
damage impair this protective process. As dysfunctional mi-
tochondria accumulate, ROS production further increases,
and energy metabolism becomes increasingly disrupted.
These factors create a deleterious feedback loop that ac-
celerates photoreceptor cell death.5'52 Moreover, the build-
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up of mitochondrial DNA (mtDNA) mutations is another key
factor. Human induced pluripotent stem cell-derived RPE
cells harboring mitochondrial DNA (mtDNA) mutations as-
sociated with mitochondrial encephalopathy, lactic acidosis,
and stroke-like episodes exhibit high heteroplasmy, resulting
in deficits in mitochondrial function and mitophagy. These
findings implicate mtDNA mutations in the disruption of mi-
tochondrial quality control and in the promotion of AMD-like
pathology.?

Oxidative stress activates various signaling cascades
that amplify retinal damage. ROS can stimulate the MAPK
pathway, leading to the phosphorylation of transcription
factors that upregulate pro-apoptotic and pro-inflammatory
genes.?*55 |n parallel, oxidative stress disrupts calcium ho-
meostasis; elevated intracellular calcium levels can trigger
the opening of the mitochondrial permeability transition pore,
resulting in mitochondrial swelling, depolarization, and the
activation of cell death pathways.%® This calcium dysregu-
lation further compromises mitochondrial function and in-
creases cellular susceptibility to oxidative damage. Exces-
sive ROS also triggers adaptive metabolic reprogramming in
retinal cells. Under high oxidative conditions, cells may shift
their metabolism from oxidative phosphorylation toward gly-
colysis and the pentose phosphate pathway to generate ad-
ditional reducing equivalents such as nicotinamide adenine
dinucleotide phosphate in an effort to combat ROS.4857 De-
spite these compensatory shifts, persistent oxidative stress
continues to compromise cellular viability, ultimately leading
to irreversible retinal damage.

www.cellnatsci.com 5
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Inflammation and immune dysregulation

Inflammation serves as a pivotal molecular mechanism in
retinal degeneration, originating from intricate interactions
between resident immune cells and retinal tissue that ulti-
mately lead to photoreceptor and RPE cell dysfunction.'
In the context of retinal degeneration, chronic inflammatory
responses are characterized by abnormal microglial activa-
tion, peripheral immune cell infiltration, and cytokine network
dysregulation. These factors collectively disrupt retinal ho-
meostasis and expedite cell death.585° Recently, Yu et al.5°
unveiled a distinctive microglial profile, marked by galectin-3
upregulation at atrophic sites in both mouse models and
human AMD. These findings demonstrated that deletion of
microglial galectin-3 resulted in phagocytosis defects, in-
creased photoreceptor death, RPE damage, and vision loss,
highlighting its protective role. Furthermore, Trem2 signaling
was shown to direct microglial migration to atrophic sites and
induce galectin-3 expression, with pharmacological Trem2
activation protecting in a galectin-3-dependent manner.5°
Another study indicated that nascent RPE inflammation
cascades to involve microglial activation and photoreceptor
degeneration with monocyte infiltration and that inflamma-
tion drives severe, early-onset photoreceptor degeneration
associated with Mertk loss of function.9

Neutrophils have been implicated in chronic retinal in-
flammation, according to recent research. In a retrospec-
tive case-control study, He et al.8" observed a significantly
greater neutrophil-to-lymphocyte ratio (NLR) in the periph-
eral blood of RP patients than in that of control patients with
only age-related cataracts. Moreover, the NLR was posi-
tively correlated with the degree of visual function impair-
ment, implying that systemic neutrophil-mediated inflamma-
tion contributes to RP progression. Additionally, Fan et al.62
reported that neutrophils cocultured with the adult retinal
pigment epithelial cell line-19 in a laser-induced choroidal
neovascularization (CNV) mouse model markedly increased
the secretion of various pro-inflammatory cytokines and in-
duced DNA double-strand breaks, leading to S-phase arrest
in RPE cells and facilitating CNV formation, thus revealing
the crucial pro-inflammatory role of neutrophils in wet AMD
pathogenesis. In addition to microglia and neutrophils, the
RPE also plays a dual role. It supports photoreceptor func-
tion and modulates local immune responses. Under physi-
ological conditions, the RPE serves as an immunoregulatory
barrier. However, under conditions of oxidative stress and
ER dysfunction, the expression of key immunomodulatory
molecules such as interleukin-1 receptor-associated kinase
M in the RPE decreases, resulting in increased inflammatory
cytokine secretion and aggravated outer retinal degenera-
tion.63

In addition to cellular players, complex signaling path-
ways integrate environmental stress signals with intrinsic
immune responses. The cyclic GMP-AMP synthase (cGAS)-
STING pathway, which is activated by cytosolic DNA frag-
ments, has emerged as a critical mediator of innate immune
responses. In models of light-induced retinal degeneration,
aberrant cGAS-STING activation in microglia and infiltrating
macrophages is correlated with elevated proinflammatory
cytokine expression and accelerated photoreceptor apop-
tosis.5465 Moreover, prolonged ER stress can potentiate in-
flammatory responses by activating nuclear factor kappa B
and other transcription factors that upregulate cytokine pro-
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duction, linking protein misfolding with immune dysregula-
tion in a self-perpetuating cycle.!7:66

Protein misfolding, ER stress, and autophagy

High metabolic activity and rapid protein turnover render
retinal neurons and RPE cells exceptionally susceptible to
proteostatic disturbances. Aberrant protein folding and ag-
gregation trigger ER stress, activating the UPR as an ini-
tial protective mechanism to restore cellular homeostasis.”
However, chronic ER stress converts sustained UPR signal-
ing from cytoprotective to pro-apoptotic, significantly contrib-
uting to retinal degeneration in diseases such as AMD and
RP.15-17 The accumulation of misfolded proteins in the ER,
particularly in RPE cells, has emerged as a key molecular
event in retinal degeneration. The UPR is mediated through
key transducers, including inositol-requiring enzyme 1 alpha,
protein kinase R-like endoplasmic reticulum kinase, and ac-
tivating transcription factor 6. Recent conditional knockout
studies have shown that deletion of inositol-requiring en-
zyme 1 alpha in rod photoreceptors does not affect early
retinal development but leads to significant photoreceptor
loss and functional decline in aged retinas, underscoring
the importance of properly regulated ER stress signaling in
maintaining retinal integrity.?® These data emphasize that
while the UPR initially plays a protective role, its prolonged
activation due to persistent accumulation of misfolded pro-
teins may ultimately trigger cell death.

In addition to UPR activation, changes in autophagy,
which is key for breaking down misfolded proteins and dam-
aged cell parts, are crucial in retinal degeneration. Impaired
autophagy often occurs early in disease. For example, in the
rd10 mouse model of RP, clear changes in autophagy mark-
ers such as p62 and LC3 are observed even before photore-
ceptor degeneration is obvious. These findings suggest that
defective autophagy contributes to the formation of harmful
protein aggregates and exacerbates ER stress.'8 Addition-
ally, abnormal aggregation of RNA-binding proteins (RBPs)
and stress granule formation are closely linked to disrupted
autophagy and ER stress in the degenerating retina.!81°
Chaperone-mediated autophagy (CMA) is also vital for reti-
nal proteostasis. Orally bioavailable small molecules selec-
tively activate CMA in vivo by stabilizing the retinoic acid re-
ceptor a—NCOR1 complex, fine-tuning retinoic acid receptor
alpha-dependent transcription.®® These activators preserve
CMA activity during aging and markedly reduce photorecep-
tor degeneration in an RP mouse model, highlighting a novel
therapeutic strategy for retinal diseases.

Ubiquitination, a critical posttranslational modification,
regulates protein degradation via both the ubiquitin-protea-
some system (UPS) and autophagy. Disruptions in ubiquit-
in-mediated proteolysis have been implicated in retinal de-
generation. In such cases, impaired clearance of misfolded
proteins exacerbates cellular stress and promotes neurode-
generative cascades.”® Therefore, a finely tuned balance be-
tween ubiquitination and autophagic degradation is essential
for maintaining retinal protein homeostasis. Any imbalance
may increase the susceptibility of retinal cells to dysfunction
and death.’%7" Importantly, cellular stress responses in reti-
nal cells are not confined solely to the ER. For example, ER
stress-induced disruption of autophagy can adversely affect
mitochondrial quality control, thereby further amplifying the
degenerative process.”273
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Vascular abnormalities and changes in the extracellular
matrix

Vascular anomalies are crucial in driving retinal degenera-
tion. A recent study revealed that patients with advanced RP
exhibit reduced macular vessel density, with notable differ-
ences observed in all four quadrants of the deep capillary
plexus and three quadrants of the superficial capillary plex-
us.2' Another retrospective study employed optical coher-
ence tomography angiography to investigate macular vas-
cular abnormalities in patients with macular dystrophies and
RP compared to healthy controls. The findings revealed that
patients without edema presented minimal or no alterations
in foveal avascular zone (FAZ). In contrast, RP patients with
edema exhibited significantly reduced FAZ dimensions—
both vertically and horizontally—as well as a smaller FAZ
surface area in the superficial vascular complex. Meanwhile,
the FAZ in the intermediate capillary complex was mark-
edly enlarged.” Cross-sectional research by Overbey et
al.”® provided a comprehensive database for choriocapillaris
flow deficit percentage (CCFD%) across dry AMD stages via
swept-source optical coherence tomography angiography.
The CCFD% increases with the severity of AMD, an incom-
plete RPE, outer retinal atrophy, and subretinal drusenoid
deposits (SDDs), particularly in the early and intermediate
stages, as well as with the size of RPE atrophy.”® These
findings support CCFD% as a valuable clinical and research
biomarker and underscore the need for longitudinal studies
to confirm its prognostic value.”® Abdolrahimzadeh et al.”®
demonstrated significant choriocapillaris damage in early
AMD, particularly in eyes with SDDs. The central macular
choriocapillaris flow area in the SDD group was significant-
ly lower (p < 0.001) than that in the healthy control group,
and there was a trend toward reduced vessel density in the
superficial capillary plexus and deep capillary plexus in the
SDD and conventional drusen groups.”®

ECM changes are key factors driving retinal degeneration.
DiCesare et al.2° demonstrated that glycogen synthase kinase
3 inhibitors significantly decrease ECM protein expression in
the outer retina and RPE basement membrane, reducing ba-
sal deposits and inhibiting AMD-like pathology in STZ-induced
mice and in vitro RPE cells. These findings highlight the gly-
cogen synthase kinase 3-ECM axis as a potential therapeu-
tic target for AMD. Obasanmi et al.”” identified granzyme B
(GzmB) as a novel therapeutic target for neovascular AMD
(nAMD). GzmB, a serine protease, is increased in the RPE
and choroidal mast cells of aging and nAMD eyes, promoting
ECM degradation, inflammation, and angiogenesis. In vitro
and in vivo experiments demonstrated that inhibiting GzmB
or preventing mast-cell degranulation reduced choroidal an-
giogenesis and CNV lesions. Thus, targeting GzmB could be
a new approach to suppress CNV in nAMD. Navneet et al.”8
highlighted the role of elastase enzymes in AMD progression.
These enzymes degrade elastin in the ECM, compromising
Bruch’'s membrane contributing to CNV. Elevated elastase
activity was observed in both AMD models and patient cells.
Treatment with A1AT, an elastase inhibitor, reduced CNV le-
sions and restored RPE integrity in mice, suggesting that it
could modify AMD progression by stabilizing the ECM.

Lipid metabolic dysregulation

Lipid metabolism is not only the energetic foundation for
maintaining retinal structure and function but also a key driv-
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er in the pathogenesis and progression of various RDDs.79:80
As one of the most metabolically active tissues in the body,
retinal homeostasis relies heavily on precise metabolic
regulation. Photoreceptors are particularly dependent on li-
pid metabolism: their outer segments contain high levels of
polyunsaturated fatty acids (PUFAs), especially docosahex-
aenoic acid (DHA), which are crucial for membrane fluidity,
visual signal transduction, and synaptic function.8! Lipid me-
tabolism supports the continuous renewal of photoreceptor
outer segment membranes, which undergo daily turnover
through a coordinated cycle of synthesis by photoreceptors
and phagocytosis by the RPE.82 Cholesterol, phospholipids,
and sphingolipids are also tightly regulated to preserve pho-
toreceptor integrity, intercellular signaling, and visual cycle
function.®

Defects in lipid transport or cholesterol/phospholipid me-
tabolism can result in abnormal lipid accumulation within cells
and in extracellular matrices, such as Bruch’s membrane
and drusen/subretinal drusenoid deposits, leading to RPE
stress, complement activation, inflammatory cascades, and
ultimately photoreceptor degeneration.84-8¢ For example,
ABCA4 loss-of-function, associated with Stargardt disease,
has been shown in recent lipidomic studies to cause intra-
cellular and extracellular accumulation of A2E and retinoid
intermediates in RPE cells. This is accompanied by broader
lipidome remodeling and lipid droplet deposition, which ex-
acerbates phototoxicity, oxidative stress, and RPE/photore-
ceptor cell death, thereby mechanistically linking visual cycle
metabolism with cellular toxicity.8” Similarly, Bietti crystalline
dystrophy—caused by mutations in CYP4V2, an enzyme
critical for PUFA metabolism and membrane lipid turnover—
leads to disrupted lipid metabolism and local crystalline de-
posits, driving progressive RPE and retinal atrophy.88

Photoreceptor membranes, rich in PUFAs, are highly
susceptible to lipid peroxidation under conditions of high
metabolic demand and light exposure. This generates reac-
tive aldehydes such as 4-hydroxynonenal and malondialde-
hyde, which damage membrane proteins and mitochondria,
thereby amplifying inflammatory responses.8? Concurrently,
iron dyshomeostasis accelerates lipid peroxidation via Fen-
ton chemistry, promoting ferroptosis, a lipid peroxidation-
dependent mode of cell death, as a central mechanism un-
derlying damage to the RPE and photoreceptors.®® Recent
cellular and animal studies have directly linked ferroptosis to
AMD and blue light/A2E-induced RPE degeneration, provid-
ing a molecular basis for targeted interventions."

Moreover, dysregulation of specific lipid classes, such as
sphingolipids and ceramides, directly impacts cell fate by
inducing ER stress, mitochondrial dysfunction, and apopto-
sis or necrosis-like pathways.% Tahia et al.®® demonstrated
that in a BALB/c mouse model of light-induced retinal dam-
age, systemic administration of L-cycloserine—an inhibitor
of ceramide synthesis—after a 30-minute pretreatment sig-
nificantly reduced pro-apoptotic gene expression, and pro-
tected photoreceptors from cell death. These findings sup-
port its potential as a novel therapeutic approach for treating
RDDs.%3

Therapeutic strategies

Cell-based therapies and regenerative medicine hold im-
mense potential for the treatment of RDDs. Advances in
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stem cell technologies, transplantation techniques, and bio-
engineering approaches have brought these therapies clos-
er to clinical application. While significant hurdles remain,
ongoing research is steadily addressing key challenges re-
lated to immune compatibility, cell differentiation, and func-
tional integration. Future developments in gene editing, bio-
materials, and personalized medicine may further increase
the feasibility and effectiveness of cell-based approaches for
retinal regeneration.2994.9 As research continues to refine
these strategies, the goal of restoring vision for patients with
currently untreatable retinal disorders is becoming increas-
ingly attainable. Currently available treatments for RDDs are
summarized in Table 1, providing an overview of pharmaco-
logical, gene-based, cellular, and device-assisted therapeu-
tic options.

Pharmacological interventions

Pharmacological interventions play crucial roles in manag-
ing retinal degeneration, offering ways to slow disease pro-
gression and preserve visual function by targeting underly-
ing molecular mechanisms. Many studies have focused on
agents that address key pathogenic processes, such as
abnormal angiogenesis, inflammation, oxidative stress, and
neurodegeneration.

Anti-inflammatory therapies, along with immunomodula-
tion, are critically important in managing the inflammatory
processes associated with retinal degeneration. Intravit-
real injections of corticosteroids such as triamcinolone and
dexamethasone have proven effective in treating cystoid
macular edema, which is a common complication in patients
with RP.%6 Similarly, anti-VEGF therapy has become a cor-
nerstone for managing diabetic macular edema, macular
edema related to retinal vein occlusion (RVO), and nAMD.
The systematic review by Aldokhail et al.,®” which included
18 studies (ranging from randomized controlled trials to pro-
spective studies, retrospective analyses, and observational
studies), demonstrated that anti-VEGF therapy was effec-
tive across all three conditions. Different proportions of pa-
tients experienced improvements in best-corrected visual
acuity (BCVA) and reductions in central macular thickness
(CMT). Specifically, the proportion of patients with 215 ET-
DRS letters in DME ranged from 18.1% to 44.8%, whereas
the mean changes in BCVA in RVO-related ME and nAMD
patients were between +4.2 letters and +21.4 letters. The
reduction in CMT in DME and RVO-related ME ranged from
183.1 ym to 294 ym. Pharmacological approaches also en-
compass dual-targeted strategies. A systematic review and
meta-analysis comparing faricimab (a bispecific antibody
targeting both VEGF and angiopoietin-2) with conventional
anti-VEGF agents revealed that faricimab provided compa-
rable BCVA improvements and better anatomical outcomes,
such as reduced central foveal and choroidal thickness.*
Such dual-targeted approaches may vyield greater benefits
by simultaneously modulating angiogenic and inflammatory
processes. Additionally, over the past 10-12 years, tradi-
tional medications such as the prostaglandin F2 a-agonist
isopropyl unoprostone, the calcium channel blocker nilvadi-
pine, valproic acid, and growth factors have been utilized to
increase retinal sensitivity or slow the progression of inher-
ited retinal diseases (IRDs).%

Emerging evidence advocates the repurposing of drugs
with established safety profiles to protect the retina. A re-
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cent case-control study indicated that metformin, a widely
used antidiabetic agent, was associated with reduced odds
of developing AMD in non-diabetic patients.?® Metformin ap-
pears to have neuroprotective effects by modulating inflam-
matory pathways, reducing oxidative stress, and enhancing
mitochondrial function. In addition, N-acetylcysteine, which
is commonly used for pulmonary and psychiatric disorders,
can directly scavenge free radicals, thereby reducing oxida-
tive damage. This effect may enhance cone function and
survival in RP. One study administered different doses of
N-acetylcysteine (600 mg to 1,800 mg) twice daily to RP pa-
tients for 12 weeks and then three times daily for another
12 weeks, leading to a significant improvement in the mean
BCVA.100

The therapeutic potential of specific nutrients for RDDs is
increasingly being revealed. DHA is recognized for its critical
role in retinal development and maintenance, and is thought
to promote photoreceptor health because of its antioxidant
properties.'®" DHA levels are reduced in both mouse RP
models and human RP patients.’02 Lutein, a xanthophyll
and the primary carotenoid that accumulates in the human
macula to form macular pigment, has antioxidant properties
that may benefit retinal health. Studies on animal models
have investigated their protective effects against RP, yielding
promising results in preventing photoreceptor degeneration.
Treatment with lutein and zeaxanthin, another xanthophyll,
results in larger a-wave and b-wave amplitudes in dark-
adapted electroretinography (ERG), as well as larger b-wave
amplitudes in light-adapted ERG."%% Moreover, lutein admin-
istration has been associated with a significant increase in
outer nuclear layer thickness in mice.'® Curcumin, a bio-
active compound derived from the plant turmeric (Curcuma
longa), has garnered interest because of its potential multi-
faceted pharmacological effects, including anti-inflammatory,
antioxidant, and neuroprotective properties. Curcumin sup-
presses the production and release of pro-inflammatory cy-
tokines, chemokines, and enzymes involved in retinal inflam-
mation. Preclinical studies have reported that through these
mechanisms, curcumin contributes to the preservation of the
retinal structure, increased thickness of the outer and inner
nuclear layers, and improved ERG responses.’%> Moreover,
promising results have been obtained in assays involving
dietary supplementation with antioxidant compounds such
as vitamin A, zinc, manganese, saffron, safranal, and coen-
zyme Q.106.107

Gene therapy and molecular approaches

Gene therapy has ushered in a new era in the treatment and
potential cure of diseases, offering hope to millions of people
impacted by inherited disorders or harboring disease-caus-
ing mutations.'® The development and application of gene
therapy for RDDs have consistently been at the cutting edge
of translational medicine. Retinal gene therapy methods dif-
fer depending on the type of mutation and may involve gene
replacement/augmentation, silencing/editing of the mutated
gene, or supplying a modifier gene that influences upstream
or downstream pathways from the defective gene to en-
hance cellular function.

Gene replacement directly supplies a functional copy of
a damaged or nonfunctional gene to increase functional
protein production. It is ideal for monogenic recessive inher-
ited diseases. For example, CEP290 gene mutations are a
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Table 1. (continued)

Key findings/therapeutic effects

Representative methods/

Subcategory drugs/technologies

Category

Restore light responses in blind mice and
primates; stable long-term effects

Gold nanoparticle—titania nanowires,
tellurium nanowire networks

Nanomaterial-

based prostheses

Confer photosensitivity to inner retinal
neurons, partial vision restoration

Channelrhodopsins, ReaChR

Optogenetic therapy  Microbial opsins

Enhanced neural responsiveness, reduced latency

Optogenetics + electrical stimulation

Hybrid stimulation

Improve blood flow, oxygen consumption; delay visual field loss

Transcorneal or transorbital stimulation

Electrical stimulation

Complementary

therapies

Increase ocular blood flow, reduce RGC injury

Electro-acupuncture

Acupuncture

Enhance photoreceptor survival, reduce
inflammation, improve quality of life

Exercise, yoga

Physical activity
& lifestyle

Reduce anxiety/depression, improve

vision-related quality of life

Psychological counseling,

Psychosocial
support

socioeconomic support
3; ONL, outer nuclear layer; RGCs, retinal ganglion cells; RORa, retinoic acid receptor-related orphan receptor alpha; RP, retinitis pigmentosa; RPE, retinal pigment epithelium; RVO-ME, retinal vein occlusion-related macular

IRD, inherited retinal disease; LCA, Leber congenital amaurosis; miRNA, microRNA; MSCs, mesenchymal stem cells; nAMD, neovascular age-related macular degeneration; Nr2e3, nuclear receptor subfamily 2, group e, member
edema; siRNA, small interfering RNA; TALEN, transcription activator-like effector nuclease; VEGF, vascular endothelial growth factor; ZFNs, zinc finger nucleases.

AAV, adeno-associated virus; AMD, age-related macular degeneration; Ang-2, angiopoietin-2; BCVA, best-corrected visual acuity; CMT, central macular thickness; CNV, choroidal neovascularization; CRISPR, clustered regularly
interspaced short palindromic repeats; DHA, docosahexaenoic acid; DME, diabetic macular edema; ERG, electroretinography; ESC, embryonic stem cell; FDA, Food and Drug Administration; iPSC, induced pluripotent stem cell;
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leading cause (15-20%) of Leber congenital amaurosis.'%9
Voretigene neparvovec (VN), the first U.S. Food and Drug
Administration (FDA)-approved gene replacement therapy
marketed as Luxturna, is used to treat severe Leber con-
genital amaurosis type 2. In a phase Il trial, 29 patients
with RPE65-linked retinal dystrophy received subretinal
injections of Luxturna. After one year, 65% of participants
showed functional vision improvement in the multiluminance
mobility test.''® Gene silencing uses small interfering RNA
(siRNA) to break down sequence-specific mMRNAs, eliminat-
ing the product of a faulty gene. Gene silencing with siRNAs
or microRNAs targeting VEGF is being developed for AMD,
glaucoma, and other ocular diseases.'"'-"13 Several clinical
trials utilizing targeted gene silencing techniques are cur-
rently underway.14-116

Gene editing involves correcting individual mutations or
reducing the expression of mutated proteins in a targeted
way. This technique fixes gene mutations or decreases the
expression of faulty proteins to change the disease state.
Several gene-editing techniques have been developed, in-
cluding clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated protein 9 (Cas9),
transcription activator-like effector nucleases (TALENS),
zinc finger nucleases, and meganucleases.''” Among these,
CRISPR/Cas9 is the most well known and has shown po-
tential in gene therapy. In 2016, Bakondi et al."8 first dem-
onstrated in vivo functional ablation of an inherited dominant
mutation via CRISPR/Cas9 by targeting a mutant Rho allele
in a rat model of autosomal dominant RP. Recently, Chen
and colleagues created a human iPS cell line (CSUASQIi006-
A) from an RP patient with a pre-mRNA processing factor 8
(c. C5792T) mutation."® They used CRISPR/Cas9 to correct
the ¢.5792C > T mutation in pre-mRNA processing factor 8
and generated an isogenic control cell line (CSUASOI006-
A-2), providing a key cellular resource for RP research. Siles
et al.'?0 precisely corrected seven hiPS cell lines from IRD
patients with mutations in ABCA4, BEST1, PDE6GA, PDEGC,
RHO, or USH2A via CRISPR/Cas9 and TALENSs. The cor-
rected clones reversed the disease-associated phenotype
in retinal cellular models,'?° strengthening the study and
application of gene-editing-based IRD treatments. Modifier
gene therapy can affect pathways downstream or upstream
of multiple defective genes, addressing clinical phenotypes
without genetic diagnosis in a mutation-agnostic way. Li et
al.'2! found that therapy with the nuclear hormone receptor
gene Nr2e3 reduced retinal degeneration. They reported an
increase in photoreceptor cells, improved electroretinogram,
and a molecular reset of key transcription factors and gene
networks, enhancing retinal homeostasis in diseased tissue.
Chang et al.’?? discovered that retinoic acid-related orphan
receptor a, which acts as a genetic modifier, can rescue reti-
nal degeneration in mouse models of Stargardt disease and
dry AMD.

Retinal gene therapy employs a variety of delivery vehi-
cles, including adenovirus, adeno-associated virus (AAV),
retroviral and lentiviral vectors, naked DNA/RNA, synthetic
polymers, niosomes, and lipid-based carriers such as li-
posomes and lipid nanoparticles. The administration routes
for these delivery vehicles include subtenon, subconjunc-
tival, subretinal, and suprachoroidal ocular implants. Op-
timizing vector delivery methods and dosing strategies is
key to the success of gene therapy. Luo et al.'? introduced
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a novel AAV capsid, AAVv128, which has increased trans-
duction efficiency for photoreceptors and RPE cells and
broader retinal tissue distribution in various animal models
after intraocular injection. Notably, suprachoroidal delivery
of the AAVv128-antiVEGF vector effectively suppressed
Grade |V lesions in a laser-induced CNV NHP model of
nAMD. Campochiaro et al.'?* evaluated the safety and
efficacy of RGX-314, an AAV8 vector expressing an anti-
VEGF-A antibody fragment, which was administered via
subretinal injection in NAMD patients. In this phase 1/2a
trial, 42 participants received single subretinal injections of
RGX-314 across multiple doses (3 x 10° to 2.5 x 10" ge-
nome copies per eye) and were followed for 2 years. The
results showed that RGX-314 was generally well tolerated,
with no clinically significant immune responses. At doses
26 x 100 genome copies, most patients maintain stable/
improved vision and retinal thickness with few or no ad-
ditional anti-VEGF injections needed.

Cell-based approaches

Cell-based therapies have come to the forefront as promis-
ing solutions to address the complex challenges of retinal
degeneration. These therapies have the potential to restore
lost retinal tissues or repair damaged ones, to restore vision
or at least prevent further deterioration. Over the years, ex-
tensive preclinical and clinical trials have been carried out
to explore the efficacy of cell therapy for RDDs. A variety of
cell types, including embryonic stem cells (ESCs), induced
pluripotent stem cells (iPSCs), mesenchymal stem cells
(MSCs), and progenitor cell-derived cells, have been em-
ployed in these trials to treat different retinal conditions and
enhance functional outcomes. Such research has been con-
ducted across a range of animal models and has addressed
diseases from RP to AMD, glaucoma, and general retinal
degeneration.

One significant benefit of employing ESCs for degenera-
tive diseases is their ability to indefinitely differentiate into
virtually any cell type. Wu and colleagues effectively induced
rat ESCs to differentiate into RPEs and photoreceptors, and
retinal transplantation in RCS rats resulted in the restora-
tion of visual function.'? In RCS rats, following the trans-
plantation of human embryonic stem cell (hESC)-derived
RPEs, an improvement in visual performance was observed
compared to untreated controls.'?® Nevertheless, although
mouse ESCs integrate into mild retinal degeneration models
and exhibit mature morphologies with photoreceptor mark-
ers, in severe retinal degeneration models, the transplanted
cells survive but do not acquire mature morphological char-
acteristics. 1%’

Although ESC-based replacement therapy is highly im-
portant for retinal regeneration, its application is hindered
by immune rejection, tumor formation, and ethical issues.
Sharma et al.'?8 developed clinical-grade iPSCs from AMD
patients without oncogene mutations and differentiated them
into RPE patches on biodegradable scaffolds. This allows
the cells to integrate into rodent and porcine models of AMD-
like eye diseases.'?® Furthermore, Salas et al.'?° reported
that a combination of hiPSC-derived RPE cells and retinal
progenitor cells was more effective at preserving intrinsic
photoreceptors and visual function in both early- and late-
stage disease degeneration than transplanting either cell
type alone. The long-term effectiveness of human iPSC-de-
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rived cells after transplantation has also been demonstrat-
ed. Human iPSC-derived retinal grafts have been shown to
survive for up to five months in rats and for two years in
monkey models.'3%-13" Nonetheless, in porcine models mim-
icking advanced AMD, subretinal transplantation of hiPSC-
derived RPE cells was less effective in atrophic regions than
in healthy areas.'32

Another approach that supports autologous cell trans-
plantation and reduces immune rejection involves the use of
MSCs. Owing to their anti-inflammatory properties, growth
factor-producing ability, and role in promoting tissue regen-
eration, MSCs are well-suited for retinal degenerative cell
therapies.'3® Notably, MSCs can differentiate into photo-
receptor-like cells, amacrine cells, bipolar cells, and RPE
cells.'34-136 Recent studies have demonstrated that intravit-
real injections of MSCs have protective effects on the retina
and can enhance visual function.'37.138 Additionally, MSCs
can serve as biological patches to preserve the blood-ret-
inal barrier, thereby promoting functional recovery follow-
ing retinal ischemia/reperfusion.'3® Moreover, MSC-derived
exosomal miR-125b-5p has been shown to suppress retinal
microvascular endothelial cell ferroptosis in diabetic retin-
opathy.™0 Additionally, miR-125a-5p in small extracellular
vesicles derived from MSCs alleviates Muller cell injury in
diabetic retinopathy by modulating mitophagy through the
PTP1B pathway.

Retinal prostheses and nanotechnology

Retinal prostheses aim to provide functional vision for those
suffering from severe vision loss. Their effective operation
depends on a posterior visual pathway that is reasonably
well preserved, including the optic nerve, lateral geniculate
nucleus, and visual cortex. For individuals in the advanced
stages of retinal degenerative conditions such as RP and
AMD, retinal implants serve as a viable option.'!-142 Owing
to their tunable optoelectronic characteristics, high surface-
to-volume ratios, and favorable tissue compatibility, nanoma-
terials provide promising platforms for next-generation retinal
prostheses. '3 Recently, Yang et al.'** explored subretinally
implanted gold nanoparticle-coated titania nanowire arrays
as artificial photoreceptors. Tests in mice and monkeys with
induced photoreceptor degeneration showed that arrays have
advanced spatial and temporal resolution in ex vivo retinas. In
blind mice, they improve visual acuity and help detect certain
stimuli. In monkeys, long-term stability and positive impacts
on the primary visual cortex were observed. Nie et al.'5 dem-
onstrated that intravitreal injection of anti-Thy1-conjugated
near-infrared-resonant gold nanorods enables targeted pho-
tothermal activation of bipolar cells via a 20 pm-patterned
near-infrared (NIR) laser scan, eliciting robust visual cortex
responses in both wild-type and blind mouse models without
systemic toxicity or retinal damage, thereby offering high-
resolution, wide-coverage, and a minimally invasive strategy
for customizable vision restoration. Wang et al.'#6 engineered
a subretinal nanoprosthesis composed of tellurium nanowire
networks (TeNWNs) capable of transducing both visible and
near-infrared Il light into electrical impulses. When implanted
in blind mice, these TeNWNSs reinstated the pupillary light re-
flex and supported visually guided learning under illumination
at visible wavelengths and 1,550 nm. In nonhuman primate
studies, TeNWNs evoked strong neural responses originating
from the retina.
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Optogenetic therapeutic approaches

Groundbreaking advances in optogenetics are driving the
development of novel therapeutic approaches to restore
vision in individuals suffering from RDDs such as RP. Op-
togenetics operates by leveraging light-sensitive proteins
to make surviving retinal neurons responsive to light, with
a primary focus on secondary and tertiary neurons in the
retina.'#” This allows these neurons to take over the func-
tion of the degenerated photoreceptors. Through the use
of microbial opsins such as channelrhodopsins, research-
ers can turn inner retinal neurons into photosensitive cells.
Consequently, these neurons can respond to light and re-
store some visual function even after photoreceptor loss has
occurred. Ng et al.'8 conducted a retrospective analysis
of retinal structure in patients with late-stage IRD to evalu-
ate its suitability for optogenetic gene therapy. In this study,
36 patients (54 eyes) with late-stage IRD were categorized
into three groups based on clinical phenotype and history.
Spectral-domain optical coherence tomography was em-
ployed to analyze structural parameters, including subfoveal
thickness and individual inner layers. The results revealed
that 46.3% of the degenerated retinas still retained some in-
ner retinal layers or exhibited thickening of the inner nuclear
layer. These findings suggest that cell-specific optogenetic
therapy may be advantageous. In contrast, patients with un-
clear or disrupted inner layers might require non-cell-specific
approaches that target all surviving neurons. Rohet et al.'4?
investigated the hybrid approach of combining optogenetic
and electrical stimulation to decrease optical power and
enhance the effectiveness of retinal stimulation. Compared
with optogenetic stimulation alone, hybrid stimulation with a
10 pA square pulse markedly increased spiking activity and
reduced latency across all light intensities in wild-type mice.
Rodgers et al."®® showed that while introducing the optoge-
netic protein ReaChR into depolarizing (ON) bipolar cells or
retinal ganglion cells (RGCs) in retinally degenerate mice
restores visual responses with significant fidelity, target-
ing ON BCs results in more favorable outcomes, including
more diverse and reproducible responses, better-preserved
contrast sensitivity and temporal frequency tuning, and less
disruption to the visual feature selectivity of individual RGCs
than does targeting RGCs directly, thus highlighting that ON
BC targeting yields a richer visual code closer to that of wild-
type mice.

Complementary therapies

Electrical stimulation (ES) is a non-pharmacological method
that delivers microcurrents to target tissues. These micro-
currents induce biochemical effects on cells, potentially pre-
serving or restoring vision.'"152 |n a patient cohort moni-
tored for up to one year, increased ES was linked to a trend
toward preventing visual field loss and enhancing photopic
ERG b-wave amplitudes, suggesting an impact on the cone
photoreceptor system, which aligns with preclinical biomark-
er studies. 53 Bittner et al.'> reported a significant improve-
ment in retinal blood flow (RBF) in macular capillaries after
six weeks of ES treatment. Half a year following transcorneal
electrical stimulation (TES) therapy, there was an increase
in the mean retinal arteriolar oxygen saturation compared to
baseline, whereas the venular saturation decreased, indicat-
ing that TES treatment for RP results in increased oxygen
consumption in the retina.'%5
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Acupuncture, a vital element of complementary and al-
ternative medicine, has been increasingly applied to treat a
range of conditions, including pain, neuropathy, migraine,
and insomnia.’®® Bittner et al.’® reported that electroacu-
puncture significantly increased the mean flow velocity of
the retrobulbar central retinal artery after two weeks and
increased the RBF after one month of treatment compared
with controls. Wang et al. revealed that electroacupunc-
ture might reduce RGC injury by modulating the IncRNA-
XR_002789763.1/miR-342-5p axis, activating the PINK1/
Parkin pathway, and promoting Mfn2 ubiquitination.'”

Physical activity is widely acknowledged for its positive
impact on overall health and well-being. Preclinical studies
have demonstrated that in RP mouse models, exercise ex-
erts a beneficial effect on retinal degeneration by reducing
vision loss and retinal damage. This involves an increase
in the number of cone cells,’® a reduction in photorecep-
tor loss, and a decrease in retinal inflammation.'® In a pre-
liminary study, physical activity was found to enhance self-
reported visual function and quality of life in patients with
RP.160 Additionally, Jiang and colleagues investigated the
relationship between retinal microcirculatory responses and
improvements in cognitive function in Parkinson’s disease
patients following yoga training. Their results indicated that
enhanced RBF and increased retinal capillary perfusion
density in the superficial vascular plexus were associated
with improved performance on the Trail-making A test. Fur-
thermore, changes in capillary perfusion density within the
retinal vascular network were linked to better scores on the
Hopkins Verbal Delayed Recall test.

Among individuals with retinal dystrophies, the interplay
between psychological aspects such as anxiety, fear, and
decreased vision-related quality of life can aggravate the
condition, establishing a negative feedback loop where psy-
chological distress may impact the disease’s trajectory. RP
and progressive visual disability can also lead to significant
economic burdens on patients, affecting healthcare ex-
penses and personal support costs and resulting in a loss of
working hours, work quality, and income.161.162

Challenges

Despite notable progress in elucidating the molecular un-
derpinnings of retinal diseases, the rapid advancement of
gene therapies, cell-based interventions, and regenerative
medicine for retinal degeneration has outpaced traditional
regulatory frameworks. Advancing treatments for retinal
degenerative disorders requires overcoming a multitude of
challenges, including biological complexity, limitations in pre-
clinical modeling, delivery barriers, ethical considerations,
and the need to balance innovation with rigorous risk man-
agement. Below, we detail these obstacles and their implica-
tions for advancing therapies.

Biological complexity and patient heterogeneity

Retinal degenerative disorders exhibit profound genetic and
phenotypic heterogeneity, posing a formidable challenge to
any universal therapeutic approach. To date, mutations in
more than 330 genes have been linked to IRDs, each giv-
ing rise to distinct clinical phenotypes and rates of progres-
sion.'83.164 |n addition to monogenic causes, epigenetic al-
terations further diversify disease mechanisms, increasing
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the complexity of pathogenesis.'®> Furthermore, both intra-
and interfamilial variability in severity and trajectory impedes
the reliable prediction of treatment outcomes. '8¢ Elhusseiny
et al.'®” investigated multiple affected members within a sin-
gle pedigree harboring the same pathogenic PRPH2 muta-
tion and reported marked interindividual differences in BCVA
and the rate of clinical progression, despite a shared genetic
background. Birch et al.'®® demonstrated that the type of mu-
tant allele (null vs. expression-modulating) was significantly
correlated with phenotypic severity, even among individuals
from the same family (p < 0.01).

Limitations of preclinical models

Bridging the divide between animal models and human
retinal disease remains a critical translational challenge.
Although rodent and porcine models have illuminated key
aspects of degeneration, their differing retinal anatomy, im-
mune milieu, and regenerative capacity limit their ability to
mirror human pathology.'®® Lu et al.'”® demonstrated that
following subretinal injection of clinical-grade human neu-
ral progenitor cells into Yucatan miniature pigs, daily intra-
peritoneal dexamethasone for two weeks combined with
long-term oral cyclosporine A administration was required to
maintain graft survival. This contrasts with murine models,
where hNPCs with low MHC expression exhibit prolonged
survival without extensive immunosuppression, highlighting
a more robust intraocular immune rejection response in pigs
toward allogeneic or xenogeneic cells. In vitro systems, par-
ticularly retinal organoids, offer controlled studies of human
tissue but still fall short of replicating the in vivo microen-
vironment and long-term disease dynamics.'”'-173 Multiple
studies have reported that the inner retinal layers of retinal
organoids undergo progressive degeneration during long-
term culture (approximately 4—6 months), characterized by
a decrease in retinal ganglion cells and thinning of the inner
plexiform layer.'74-176 These shortcomings contribute to the
high attrition rate of preclinically promising therapies in hu-
man ftrials, highlighting the imperative for more representa-
tive models and comprehensive translational frameworks.

Delivery and immune response challenges

The delivery of therapies to the retina is complicated by the
distinct anatomical and immunological defenses of the eye.
Subretinal injections and other invasive delivery methods
are necessary to access retinal tissue, but they are accom-
panied by procedural risks and variability in therapeutic dis-
tribution.'”7=17° The complications associated with subretinal
injection include endophthalmitis, elevated intraocular pres-
sure, cataract formation, and vitreous or choroidal hemor-
rhage.'® However, owing to the limited number of treated
patients and the scarcity of long-term follow-up studies, the
precise incidence rates of these adverse events remain un-
determined. Guest et al.’8" reported that the use of differ-
ent syringe types or injection techniques (e.g., prefilled sy-
ringes versus Luer-Lok syringes) can result in up to a 40%
discrepancy in injection volume, thereby compromising the
uniform distribution of the drug across the vitreous and reti-
nal surfaces. Moreover, immune reactions to viral carriers or
transplanted cells can erode treatment gains and provoke in-
flammation. Clinical variability in AAV-based gene therapies,
for example, is partly driven by the host’s clearance of the
vector and local immune activation.'79.182 Addressing these

Nature Cell and Science

Nat Cell Sci 2025;3(3):¢00021
https://doi.org/10.61474/ncs.2025.00021

challenges requires both a smarter vector design to evade
immune detection and tailored immunomodulatory strate-
gies to safeguard safety and sustain efficacy.

Balancing innovation with risk management

Innovation in retinal degeneration treatment must be ac-
companied by a comprehensive risk assessment. Strate-
gies such as gene augmentation therapy and extracellular
vesicle-based interventions show exciting potential but bring
concerns about immune reactions, unintended targeting,
and sustained treatment effects.’83.184 |n response, regu-
lators are increasingly insisting on in-depth preclinical evi-
dence and early-phase trial data that prove safety over pro-
longed follow-up periods as well as therapeutic benefit. The
development of targeted gene therapies against proteins
such as FAM161A highlights the need for precision in vec-
tor dose selection and gene regulation to avoid cell toxicity
and immune complications.'® The key is to strike the right
balance between accelerating approval pathways and en-
forcing stringent safety requirements. In addition, regulators
must adopt a flexible approach to trial requirements, tailoring
endpoints to the specific disease mechanisms under inves-
tigation while still ensuring that generated data remain rigor-
ous and reproducible.186.187

Ethical challenges in patient safety and informed con-
sent

Patient safety is the foremost ethical priority, as novel retinal
therapies have advanced from preclinical studies to human
trials. Recent data from stem cell transplantation studies
have revealed serious adverse events in inadequately regu-
lated centers, underscoring the necessity of rigorous over-
sight and transparent inclusion criteria. 8818 Informed con-
sent must likewise evolve to reflect the experimental nature
of these treatments, detailing potential off-target effects and
the long-term consequences of genetically modified or stem
cell-derived products.'8190 Haapaniemi et al.'®" reported that
prolonged Cas9 expression can elicit p53-dependent growth
arrest, which may selectively increase p53-deficient or mutant
populations and increase the potential for neoplastic transfor-
mation. Ethical considerations also demand attention to eg-
uity and access. Advanced gene and cell therapies carry high
price tags, making policy interventions and innovative funding
strategies essential to ensure broad availability rather than
limiting benefits to a privileged few.192.193

Limitations

Despite our efforts to provide a comprehensive overview,
this review has several limitations that should be acknowl-
edged. First, as a narrative review, the selection of literature
may be subject to bias, and it is possible that not all relevant
studies were included. Second, the field of retinal degenera-
tion is highly heterogeneous, encompassing both monogen-
ic inherited retinal dystrophies and multifactorial diseases
such as AMD. Given this complexity, certain mechanisms
and therapeutic approaches have been emphasized more
than others. Third, owing to space constraints, some rapidly
evolving areas, including advanced biomaterials, combinato-
rial nanomedicine strategies, and digital health applications,
can only be briefly discussed. Finally, while this review high-
lights emerging therapeutic strategies, many of these ap-
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proaches are still in preclinical or early clinical trial stages,
and their long-term safety and efficacy remain uncertain.

Conclusions

RDDs pose a significant threat to global vision health, arising
from a multifaceted network of genetic and epigenetic altera-
tions, oxidative stress, mitochondrial dysfunction, inflamma-
tion, immune dysregulation, protein misfolding, ER stress,
impaired autophagy, vascular abnormalities, and ECM dis-
ruption. To date, pharmacological treatments, gene- and
molecular-based approaches, retinal prostheses, cell-based
approaches, optogenetics, TES, and other strategies have
all shown promise in clinical trials. Progress in elucidating
these molecular mechanisms and advancing therapeutic
strategies continues to deepen our understanding of RDDs
and holds promise for improving patient outcomes and qual-
ity of life. Nevertheless, to realize this objective, several bar-
riers must be surmounted, such as disease heterogeneity,
the limitations of preclinical models, and the problem of im-
mune rejection.
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