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Introduction
Central serous chorioretinopathy (CSC) is characterized by 
serous detachment of the neurosensory retina, along with 
dysfunction of the choroid and retinal pigment epithelium 
(RPE).1,2 It is generally considered a self-limiting condi-
tion.3 However, the underlying mechanisms of CSC remain 
incompletely understood.4 The majority of CSC cases re-
solve spontaneously, with visual acuity typically recovering 
within three to six months.5 For these patients, the primary 
management strategy focuses on regular monitoring and 
follow-up, as well as avoiding known risk factors, such as 
discontinuing glucocorticoid use and making lifestyle modi-
fications for individuals with Type A personalities.6,7 Type A 
personality traits, which are characterized by impatience, 
competitiveness, aggressiveness, and hostility, are often 
associated with heightened physiological responses.8 For 
patients experiencing recurrent, chronic, or prolonged cases 

of CSC, current treatment modalities primarily include laser 
therapy, surgical interventions, and pharmacotherapy.9 This 
review aims to provide a comprehensive overview of the 
pathogenesis, diagnostic approaches, and latest advances 
in the treatment of complex CSC.

Etiology and pathogenesis
The pathogenesis of CSC remains not fully understood. Cur-
rent research has identified several risk factors, including 
corticotropin-releasing hormone (CRH), stress, steroid hor-
mones, hypertension, Type A personality traits, infection with 
Helicobacter pylori, pregnancy, sleep disturbances, autoim-
mune diseases, and medication use.10,11 These factors may 
contribute to the onset and progression of CSC through vari-
ous physiological and biochemical mechanisms. At present, 
no specific targeted cells or pathways have been identified 
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for CSC. Schellevis et al.12 performed genome-wide asso-
ciation studies on patients with chronic CSC and found a 
significant association with a site on the complement factor 
H gene of chromosome 1. Pathway analysis enriched com-
plement genes, and gene expression analysis suggested 
the roles of complement factor H, complement factor H-re-
lated 1, complement factor H-related 4, CD46, the potassium 
sodium-activated channel subfamily T member 2, and tumor 
necrosis factor receptor superfamily member 10a in the 
disease. This indicates that the complement pathway has 
potential importance in the pathogenesis of chronic CSC.12 
In addition, the fibroblast growth factor receptor plays an im-
portant role in maintaining both mature and immature retinal 
pigment epithelial cells, and may be a potential pathway for 
CSC.13

CRH
CRH, a polypeptide hormone secreted by the hypothalamus, 
plays a pivotal upstream role in the pathogenesis of CSC. 
The primary function of CRH is to stimulate the anterior pitui-
tary gland to secrete adrenocorticotropic hormone, which, in 
turn, promotes the adrenal cortex to release glucocorticoids 
such as cortisol.14 Typically, CRH release is regulated by 
the stress response: under stressful conditions, its secretion 
increases, leading to elevated levels of adrenocorticotropic 
hormone and subsequently, glucocorticoids.15 This hormo-
nal cascade is a fundamental component of the hypothalam-
ic-pituitary-adrenal (HPA) axis, which helps maintain homeo-
stasis and regulate the body’s response to stress (Fig. 1).

Recent research has identified a significant association 
between the expression of the CRH gene and the develop-

ment of CSC.16,17 Variations in the CRH gene may increase 
the risk of CSC through two primary mechanisms. Firstly, the 
expression of CRH is thought to play an important protec-
tive role in stress-induced damage. This function is primarily 
realized through the enhancement of tau protein phospho-
rylation in the brain and by counteracting oxidative stress-
induced neuronal cell death, thus exhibiting neuroprotective 
properties.18 Studies in transgenic mice that overexpress 
CRH show that under acute excitatory stress, CRH effec-
tively protects the nervous system from degeneration.19 
Conversely, a deficiency in CRH reduces these protective 
effects, potentially facilitating the onset of CSC. Secondly, 
CRH expression is closely related to inflammatory cytokines. 
Animal studies have shown that CRH-deficient mice sub-
jected to stress exhibit elevated levels of inflammatory cy-
tokines, particularly interleukin-6 and tumor necrosis factor-
alpha.20 These cytokines contribute to the pathogenesis of 
CSC by increasing vascular permeability, thereby playing a 
pivotal role in the disease’s development.

In summary, CRH, as a central factor in the HPA axis, 
plays a significant role in the pathogenesis of CSC. Howev-
er, mutations in the CRH gene, combined with environmental 
stressors, can lead to aberrant responses in the HPA axis. 
This dysregulated response results in an imbalance in the 
secretion of glucocorticoids and mineralocorticoids, which 
may cause individuals with CRH mutations to experience 
disrupted inflammatory homeostasis, placing the choroid in 
a state of chronic inflammation. Under the influence of vari-
ous inflammatory factors, the increased permeability and el-
evated hydrostatic pressure in the choroidal blood vessels 
may breach the RPE, ultimately triggering CSC.

Fig. 1. Hypothesized pathogenesis of central serous chorioretinopathy. Under stress conditions, the brain secretes CRH, which subse-
quently activates the HPA axis. This activation leads to the production of glucocorticoids and mineralocorticoids by the adrenal glands. As a 
consequence, choroidal permeability is enhanced, and hydrostatic pressure within the choroidal layer increases, resulting in disruption of the 
retinal pigment epithelium and ultimately causing localized serous retinal detachment. ACTH, adrenocorticotropic hormone; CRH, corticotropin-
releasing hormone; HPA, hypothalamic-pituitary-adrenal.
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Stress
The relationship between CSC and psychological stress has 
been extensively studied.21–23 Although the precise mecha-
nisms remain incompletely understood, several hypotheses 
have been proposed to explain this association. One key 
hypothesis is that psychological stress may influence the 
onset of CSC by activating the HPA axis. Stress increases 
glucocorticoid secretion, such as cortisol, and elevated corti-
sol levels may heighten the risk of subretinal fluid (SRF) ac-
cumulation.24 This effect is similar to the impact of glucocor-
ticoid medications in CSC. Furthermore, stress may trigger 
hyperactivity of the sympathetic nervous system, leading to 
systemic vasoconstriction, including in the choroidal vascu-
lature.25 This vasoconstriction can impair choroidal circula-
tion, increase choroidal permeability, and ultimately result in 
SRF accumulation. Additionally, stress may affect the vascu-
lar endothelium and the neuroendocrine system, leading to 
increased vascular permeability, which in turn facilitates the 
development of CSC.26 This heightened permeability can 
lead to fluid accumulation beneath the retina, contributing to 
the pathogenesis of CSC.

Glucocorticoids
The precise mechanisms underlying the association be-
tween glucocorticoids, such as cortisol and pharmacological 
steroids, and CSC remain incompletely understood. Howev-
er, evidence suggests that glucocorticoids may influence the 
onset and progression of CSC through several pathways.27 
Firstly, glucocorticoids significantly impact fluid homeostasis 
and vascular function within the body.28 They may increase 
vascular permeability and choroidal leakage, leading to en-
hanced exudation in the choroidal vasculature. This choroi-
dal exudation can contribute to the accumulation of SRF, 
a hallmark pathological feature of CSC.29 Secondly, gluco-
corticoids might modulate the function of RPE cells.30 They 
may affect the barrier function of RPE cells and their ability 
to regulate fluid transport, potentially causing or exacerbat-
ing fluid accumulation beneath the RPE. Additionally, gluco-
corticoids may influence the development of CSC through 
neuroendocrine pathways.31 By affecting the HPA axis, they 
could induce an exaggerated stress response, which, in cer-
tain cases, has been implicated in the onset of CSC.

Helicobacter pylori
Helicobacter pylori is a common gastric pathogen associ-
ated with various gastrointestinal disorders, such as gastritis 
and peptic ulcers.32 In addition to its gastrointestinal effects, 
Helicobacter pylori may also be implicated in certain ocular 
diseases, including CSC, through multiple mechanisms.33 
Several hypotheses have been proposed to explain the po-
tential link between Helicobacter pylori and CSC. Firstly, the 
immune response hypothesis suggests that Helicobacter 
pylori infection induces a systemic immune reaction, poten-
tially leading to widespread inflammation. This inflammatory 
response could affect choroidal blood flow and permeability, 
increasing the risk of CSC development.34 Secondly, oxida-
tive stress is another proposed mechanism. Helicobacter 
pylori infection may exacerbate oxidative stress, which could 
impair the cellular functions of the choroid and retina, pre-
disposing individuals to CSC.35 Additionally, the release of 
vasoactive mediators is considered a possible link. Helico-
bacter pylori infection may stimulate the release of vasoac-

tive substances, such as nitric oxide and endothelin, which 
could influence choroidal blood circulation and contribute to 
the CSC pathogenesis.36 Lastly, alterations in hormonal lev-
els should be considered. Helicobacter pylori infection may 
trigger chronic stress responses that affect hormonal levels, 
such as cortisol. These hormonal changes could modify cho-
roidal permeability and pressure, thus creating conditions 
favorable for CSC development.37 Overall, further research 
is needed to substantiate these hypotheses and clarify the 
complex interactions between Helicobacter pylori infection 
and CSC.

Pregnancy
The relationship between pregnancy and the incidence of 
CSC may be attributed to significant hormonal fluctuations 
during gestation.38 The underlying mechanisms can be ex-
plained through several pathways. During pregnancy, par-
ticularly in the second and third trimesters, there is a marked 
increase in estrogen and progesterone levels.39 These 
hormones can enhance the permeability of the choroidal 
vasculature, potentially leading to the accumulation of SRF 
and consequently elevating the risk of developing CSC.40 
Furthermore, pregnancy is characterized by an increase in 
systemic blood volume and cardiac output, which may alter 
choroidal blood flow.41 These changes can impact choroidal 
pressure and permeability, thereby facilitating the develop-
ment of CSC.42 Additionally, pregnancy is recognized as a 
physiological stress condition that may activate the body’s 
stress response axis, specifically the HPA axis.43 This ac-
tivation results in elevated secretion of stress hormones, 
such as cortisol, which has been identified as a risk factor for 
CSC. Pregnancy-related complications, such as gestational 
hypertension, can lead to microcirculatory disturbances with-
in the choroid. These vascular changes heighten susceptibil-
ity to CSC.

Choroidal hyperpermeability in CSC
Two main theories are commonly discussed in investigations 
of the mechanisms underlying CSC: the choroidal dysfunc-
tion theory, also known as the choroidal hyperpermeability 
theory,44 and the RPE dysfunction theory, or diffusion the-
ory. The choroidal hyperpermeability theory proposes that 
certain factors increase the permeability of choroidal capil-
laries, resulting in significant fluid leakage and subsequent 
impairment of the RPE.44 This impairment leads to a serous 
detachment of the RPE.9 As choroidal hydrostatic pressure 
escalates, the RPE elevates, and mechanical forces disrupt 
the continuity of the RPE, leading to pigment epithelial de-
tachment and further leakage.45 This progression results in 
the accumulation of fluid beneath the neurosensory retina.44 
Pigment epithelial detachment is considered a compensa-
tory response of RPE function in eyes affected by CSC; iso-
lated leakage or RPE damage is insufficient to cause SRF 
accumulation unless RPE function decompensates to a criti-
cal level.46 An alternative explanation involves impairment 
of the uveoscleral transport pathway. Factors such as scle-
ral thickening and reduced vortex vein blood flow increase 
pressure within the choroidal veins and capillaries, impeding 
lymphatic transport of proteins from the vasculature. These 
phenomena elevate hydrostatic pressure in the choroidal 
capillaries and increase extravascular protein concentra-
tions, which may infiltrate the RPE and accumulate beneath 
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the neurosensory retina, carrying fluid with them.47 The pre-
cise etiology of choroidal abnormalities remains unclear, but 
it is thought to be related to the autoregulation of choroidal 
blood flow. Conversely, the RPE dysfunction theory, or dif-
fusion theory, suggests that certain damaging factors lead 
to injury of even a few or singular RPE cells. These dam-
aged RPE cells secrete large quantities of ions into the in-
tercellular spaces surrounding photoreceptor cells, attracting 
choroidal fluid to this area. Initially, fluid transport may occur 
through cellular channels, but excessive fluid transport can 
compromise the diffusion barrier in localized areas.48 If the 
RPE defect is small, early fundus fluorescein angiography 
(FFA) may reveal minimal leakage points. Rapid fluorescein 
leakage into areas of disciform detachment indicates sub-
stantial and swift fluid passage through the damaged RPE 
into the subretinal space. These theories provide valuable 
insight into the complex mechanisms of choroidal and RPE 
pathophysiology in CSC, though further studies are neces-
sary to clarify the complex interplay of factors contributing to 
this condition.

Pachychoroid spectrum diseases
The concept of pachychoroid spectrum disorders has 
emerged within ophthalmology.49 This spectrum encom-
passes four distinct entities: pachychoroid pigment epithe-
liopathy (PPE), CSC, pachychoroid neovasculopathy, and 
polypoidal choroidal vasculopathy.50 These conditions share 
several characteristics, including increased choroidal thick-
ness, pathological dilation of the choroidal large vessel layer, 
and thinning of both the choroidal middle vessel layer and 
the choriocapillaris.51 These disorders are considered to rep-
resent different stages of a single disease process. Specifi-
cally, PPE is regarded as a precursor to CSC; pachychoroid 
neovasculopathy may develop secondary to CSC and PPE; 
and polypoidal choroidal vasculopathy is considered the fi-
nal manifestation of this disease continuum.52–54

Medication-induced CSC
Glucocorticoids are among the most frequently implicated 
pharmacological agents in the development of CSC. Their 
role may involve elevating cyclic adenosine monophos-
phate levels within RPE cells, leading to dysfunction of 
ion transport mechanisms and increased permeability of 
the blood-aqueous barrier. These alterations ultimately 
compromise the integrity of the outer blood-retinal barrier, 
facilitating SRF accumulation. Notably, CSC patients ex-
hibit significant sympathetic nervous system hyperactivity 
coupled with reduced parasympathetic tone, compared to 
healthy controls. This autonomic imbalance underscores 
the clinical association between CSC and sympathomi-
metic agents, such as pseudoephedrine, oxymetazoline, 
ephedra (commonly found in bodybuilding supplements 
and weight-loss products), and the illicit amphetamine 
derivative 3-methoxy-4,5-methylenedioxyamphetamine.55 
Furthermore, emerging evidence suggests that the use 
of phosphodiesterase-5 inhibitors, such as sildenafil, may 
contribute to CSC onset, potentially through nitric oxide-
mediated choroidal vasodilation. Intriguingly, the atypical 
antipsychotic quetiapine, which modulates dopaminergic 
and serotonergic pathways, has also been associated with 
CSC development.56 This observation suggests a possible 
mechanistic role for neurotransmitter-mediated regulation 

of choroidal vascular permeability in CSC pathogenesis. 
Collectively, these pharmacological associations highlight 
the multifactorial interplay between neuroendocrine sign-
aling, vascular dynamics, and RPE dysfunction in CSC.57

Imaging diagnosis
FFA
FFA and indocyanine green angiography (ICGA) are con-
sidered the gold standards for diagnosing CSC. FFA typi-
cally reveals a single leakage point resembling an inkblot or 
spray-like leakage). Two leakage points are less common, 
while multiple points are rare.58 Chronic, subacute, or re-
current cases may display window defects in the RPE with 
intense fluorescence and very slow or negligible leakage 
during angiography.59 Although FFA cannot provide detailed 
images of choroidal circulation, its combination with ICGA 
is crucial for observing choroidal abnormalities associated 
with CSC. ICGA can identify delayed filling or hyperperme-
ability of choroidal capillaries corresponding to areas of RPE 
leakage, suggesting factors such as choroidal vasospasm 
or occlusion. These may lead to compensatory expansion of 
surrounding choroidal capillaries. During mid-phase angiog-
raphy, increased choroidal permeability becomes evident in 
the inner layers of the choroid, while late-phase angiography 
reveals a characteristic pattern of choroidal hyperfluores-
cence, often accompanied by shadowing from larger cho-
roidal vessels.1

ICGA
ICGA is extensively employed in the diagnosis and man-
agement of CSC and to differentiate choroidal neovascu-
larization (CNV) associated with CSC. A hallmark feature of 
CSC observed in the early phase of ICGA is the presence 
of well-demarcated hyperfluorescent regions correspond-
ing to dilated choroidal vessels.60 These regions are typi-
cally aligned with areas of RPE atrophy or detachment, as 
visualized by optical coherence tomography (OCT). In the 
intermediate phase of ICGA, the increased permeability of 
these dilated vessels results in blurred edges of the hyperflu-
orescent zones, obscuring the precise location of choroidal 
vascular dilation. During the late phase, the intermediate hy-
perfluorescent areas transform, manifesting as continuous 
hyperfluorescence, a washout-like pattern, or eccentric mi-
gration, ultimately forming a hyperfluorescent ring. These ar-
eas on ICGA indicate regions with altered autofluorescence. 
Additionally, hypofluorescence, caused by delayed filling of 
choroidal arteries and capillaries, can be observed and may 
persist into the mid-to-late phases of angiography. On ICGA, 
areas of RPE atrophy appear as hypofluorescent zones, dis-
tinguishable around 10 minutes after the start of the angio-
gram and becoming more pronounced in later stages. This 
hypofluorescence is thought to result from reduced choroi-
dal capillary perfusion. Compared to FFA, the characteristic 
“smokestack” leakage pattern in acute CSC appears later 
and occupies a smaller area on ICGA.61

Recently, ultra-widefield ICGA has been used to observe 
the extension of dilated choroidal vessels towards one 
or more vortex vein ampullae before reaching the scleral 
boundary, suggesting potential vortex vein outflow obstruc-
tion .46 Some studies have identified that in pachychoroid 
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spectrum diseases, affected vortex veins demonstrate dila-
tion and leakage, draining into expanded ampullae.62 This 
indicates that the dilated choroidal vessels observed on 
ICGA may represent branches of the vortex veins, and ob-
struction occurring as the vortex veins traverse the sclera 
leads to vortex vein stasis. Asymmetric dilation and outflow 
obstruction of the vortex veins may increase the permeability 
of macular choroidal capillaries, serving as a potential trig-
gering factor for CSC.

OCT
OCT is a critical modality for diagnosing and assessing 
CSC.63 This non-invasive, contact-free imaging technique 
provides high-resolution cross-sectional images of the ret-
ina, facilitating detailed observation of changes in retinal 
layer structures. In patients with CSC, OCT distinctly depicts 
the accumulation of SRF, which typically occurs between the 
neurosensory retina and the RPE.1 OCT imaging allows for 
the evaluation of the extent and severity of retinal detach-
ment and assists in quantifying SRF volume.64 Additionally, 
OCT is useful in detecting abnormalities in the RPE, such as 
localized elevations or defects , which may be associated 
with pathological choroidal vascular permeability.65

Repeated OCT assessments enable clinicians to dynami-
cally monitor changes in the disease and the outcome of 
therapeutic interventions.61 Following treatment, reductions 
in SRF and the restoration of retinal layers can be visually 
assessed through OCT, providing a basis for adjustments 
to the treatment plan.66 OCT not only plays a vital role in 
the timely diagnosis and assessment of CSC but is also 
invaluable in long-term follow-up, offering reliable imaging 
evidence for evaluating disease progression and therapeutic 
efficacy.67

Optical coherence tomography angiography (OCTA)
OCTA is an innovative imaging technology that evaluates the 
vascular structure and hemodynamics of CSC without the 
need for contrast agents. It provides high-resolution images 
of retinal and choroidal microvascular structures and their 
dynamics.68 In CSC patients, OCTA can reveal abnormali-
ties in the choroidal vasculature, such as capillary dilation 
and other vascular changes associated with the condition.69 
Bonini Filho et al.70 found that the OCTA device demonstrat-
ed a sensitivity and specificity of 100% in detecting CNV in 
eyes with chronic CSC, showing a high degree of concord-
ance with the gold standard of FFA. Furthermore, OCTA en-
ables clinicians to observe sub-RPE blood flow changes and 
distinguish minute subretinal neovascularization, which, al-
though uncommon in CSC, can significantly influence prog-
nosis and treatment strategy.71 A prospective study indicated 
that when dye angiography is not available, OCTA combined 
with structural OCT assessment can serve as the preferred 
initial examination for CNV screening in CSC patients. How-
ever, there are important considerations when interpreting 
CNV in CSC eyes on OCTA, such as extrafoveal, small le-
sions, and RPE undulations due to microrips.72

Additionally, OCTA is useful for evaluating and moni-
toring treatment efficacy.73 By comparing pre- and post-
treatment OCTA images, alterations in retinal and choroidal 
blood flow can be assessed, aiding in determining whether 
treatment has effectively improved pathological vascular 
abnormalities.74 Research by Wu et al.75 demonstrated that 

OCTA reveals high rates of CNV after photodynamic ther-
apy (PDT) in chronic CSC patients, suggesting that OCTA 
may serve as the primary approach for CNV identification 
in this patient population. The non-invasive, high-resolution 
nature of OCTA makes it a valuable tool in diagnosing and 
managing CSC over the long term, enhancing clinicians’ 
understanding of CSC’s underlying pathophysiology and 
progression.76

However, compared to FFA, OCTA may not effectively 
identify points of RPE leakage, and only a minority of OCTA 
findings exhibit typical CSC characteristics. In cases where 
serous retinal detachment exceeds 485 µm, OCTA images 
may be affected by artifacts that impair image quality. As 
such, OCTA still lacks the capacity to replace FFA in CSC 
diagnosis. Nevertheless, given its non-invasive and straight-
forward nature, OCTA is advantageous for follow-up exami-
nations, serving as a non-harmful method to evaluate CSC 
activity and potentially advancing research into its pathogen-
ic mechanisms.

Treatment
Observation
In the majority of cases, CSC resolves spontaneously with-
in several months, leading to favorable recovery of vision. 
However, there remains a potential risk for permanent vision 
loss. For newly onset acute serous macular detachment, a 
period of observation is generally recommended for the first 
three months. During this time, it is crucial to eliminate pre-
cipitating factors and ensure adequate rest.2

PDT
PDT was initially developed for the treatment of CNV. Sub-
sequent observations of choroidal hypoperfusion in areas 
treated with PDT have provided a rationale for its applica-
tion in treating CSC.77 PDT not only selectively occludes 
CNV but also affects the endothelial cells of the choroidal 
capillaries. When administered at a clinical dose, PDT can 
transiently and selectively close choroidal capillaries without 
causing damage to the RPE or the neurosensory retina.78 
The therapeutic effects of PDT are achieved through several 
mechanisms: (1) direct cytotoxicity to tissue cells mediated 
by phototoxic effects; (2) acute damage to the microvascu-
lature, leading to local ischemia and subsequent secondary 
cell death; and (3) activation of the local immune system, 
resulting in the production of numerous complement proteins 
and cytokines that contribute to the response.

In the context of CSC, PDT facilitates the closure of leak-
ing choroidal capillaries, reducing choroidal blood flow and 
preventing the accumulation of SRF. Traditional full-dose 
PDT uses a standard dose of verteporfin (6 mg/m2), with 
a light dose rate set at 600 mW/cm2 over 83 seconds and 
a total light energy of 50 J/cm2. Although PDT has demon-
strated good efficacy in eliminating SRF, it is not entirely free 
from risks to ocular structures. Studies have shown that the 
cytotoxicity and vascular damage associated with PDT are 
dose-dependent. As a result, several modified PDT proto-
cols have been proposed to reduce treatment-related com-
plications, including half-dose PDT, half-dose-half-fluence 
PDT, and half-time PDT. The specific parameters of these 
modified PDT protocols and the related research results are 
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presented in Table 1.78–82

The efficacy differences among these various approach-
es have been compared in numerous studies. Fujita et 
al.79 demonstrated that half-dose PDT is effective in treat-
ing chronic CSC with relatively fewer complications. Park et 
al.80 compared the effects of full-dose, half-dose, and half-
dose-half-fluence PDT on chronic CSC, finding that both 
full-dose and half-dose PDT significantly improved visual 
acuity and reduced SRF, while the effect of half-dose-half-
fluence PDT was comparatively weaker. Farvardin et al.81 
compared half-dose and one-third-dose PDT in patients with 
chronic CSC, revealing that both were effective in improving 
visual and anatomical outcomes. However, half-dose PDT 
was associated with a higher rate of SRF resolution, greater 
visual gains, and lower recurrence rates compared to one-
third-dose PDT. Baseline factors such as central retinal 
thickness and leakage patterns on fluorescein angiography 
significantly influenced treatment outcomes, underscoring 
the importance of individualized therapy plans.81 Sheptu-
lin et al.82 found that half-time PDT is a safe and effective 
treatment option for chronic CSC patients, with significant 
improvements in best-corrected visual acuity (BCVA) during 
follow-up. A multicenter retrospective study comparing half-
dose and half-time PDT for treating CSC showed that both 
protocols were effective and safe, demonstrating similar ef-
ficacy in visual improvement and SRF resolution.83 The stud-
ies above confirm the effectiveness of various modified PDT 
protocols for CSC, with half-dose PDT showing particularly 
robust efficacy. Future research should focus on larger-scale 
prospective studies to further optimize dosing strategies and 
enhance treatment outcomes.

PDT has been recognized as an effective method for 
treating CSC and was once considered a first-line therapy 
for this condition. However, its widespread implementation 
has been limited in recent years due to limitations in drug 
availability.

Subthreshold diode micropulse (SDM) laser
SDM laser photocoagulation is a high-frequency, brief, sub-
threshold, and selectively photocoagulative technique that 
divides a continuous laser beam into shorter bursts. This 
method minimizes thermal accumulation due to its low en-
ergy and minor thermal stacking effects, reducing collateral 
damage to adjacent tissues. Notably, the 577 nm yellow la-
ser utilized in SDM is less likely to be absorbed by macular 
xanthophyll, which mitigates photoreceptor damage, making 
the treatment safer. SDM is favored by many clinicians due 
to its safety and minimal invasiveness, and it has become 
the preferred treatment for patients with leakage sites locat-
ed within the avascular zone of the macula.84

Currently, there is no standardized protocol for SDM treat-
ment parameters or location for CSC, as these vary depend-
ing on the lesion site and the treating physician.85 Both 810 
nm near-infrared light and 577 nm yellow light are commonly 
used, with the latter often preferred for lesions at the fovea. 
Different researchers have adopted varying treatment ap-
proaches. Treatment locations can be categorized into three 
main types: Targeting areas of increased choroidal vascular 
permeability to reduce leakage, typically using ICGA to iden-
tify hyperfluorescent regions in the choroid. Targeting dam-
aged RPE cells to restore their barrier and pump functions, 
utilizing FFA to identify active leakage sites. Expanding the Ta

bl
e 

1.
  C

om
pa

ris
on

 o
f p

ho
to

dy
na

m
ic

 th
er

ap
y 

pr
ot

oc
ol

s 
fo

r c
en

tr
al

 s
er

ou
s 

ch
or

io
re

tin
op

at
hy

Pr
ot

oc
ol

Ve
rt

ep
or

fin
 

do
se

 (m
g/

m
2 )

Li
gh

t 
en

er
gy

 
(J

/c
m

2 )

Li
gh

t d
os

e 
ra

te
 (m

W
/

cm
2 )

La
se

r 
du

ra
tio

n 
(s

ec
on

ds
)

R
ep

or
te

d 
st

ud
y

St
ud

y 
de

si
gn

N
um

-
be

r o
f 

ey
es

C
om

pl
et

e 
re

so
lu

tio
n 

of
 s

ub
re

tin
al

 fl
ui

d 
(%

) a
t f

in
al

 fo
llo

w
-u

p
C

ha
ng

es
 in

 B
C

VA

St
an

da
rd

 fu
ll-

do
se

 P
D

T
6

50
60

0
83

Fu
na

ts
u 

et
 

al
., 

20
23

78
R

et
ro

sp
ec

tiv
e 

st
ud

y
22

81
.8

%
 (a

t 3
 m

on
th

s 
af

te
r t

re
at

m
en

t)
N

ot
 re

po
rte

d

H
al

f-d
os

e 
PD

T
3

50
60

0
83

Fu
jit

a 
et

 
al

., 
20

15
79

R
et

ro
sp

ec
tiv

e 
st

ud
y

20
4

89
.2

%
 (a

t 1
2 

m
on

th
s 

af
te

r t
re

at
m

en
t)

M
ea

n 
Lo

gM
AR

 B
C

VA
 

im
pr

ov
ed

 fr
om

 0
.1

1 
± 

0.
25

 b
ef

or
e 

to
 −

0.
01

 
± 

0.
22

 a
t 1

2 
m

on
th

s
O

ne
-th

ird
-

do
se

 P
D

T
2

50
60

0
83

Fa
rv

ar
di

n 
et

 
al

., 
20

25
81

R
et

ro
sp

ec
tiv

e 
st

ud
y

72
71

.4
%

 (a
t 1

2 
m

on
th

s 
af

te
r t

re
at

m
en

t)
M

ea
n 

BC
VA

 in
cr

ea
se

s 
fro

m
 7

2.
4 

± 
3.

9 
to

 
77

.1
 ±

 5
.6

 le
tte

rs
H

al
f-d

os
e-

ha
lf-

flu
en

ce
 P

D
T

3
25

30
0

83
Pa

rk
 e

t a
l.,

 
20

19
80

R
et

ro
sp

ec
tiv

e 
st

ud
y

43
N

ot
 re

po
rte

d
N

ot
 s

ig
ni

fic
an

tly
 

im
pr

ov
ed

H
al

f-t
im

e 
PD

T
6

50
60

0
42

Sh
ep

tu
lin

 e
t 

al
., 

20
18

82
R

et
ro

sp
ec

tiv
e 

st
ud

y
11

4
87

%
 (a

t 1
2 

m
on

th
s 

af
te

r t
re

at
m

en
t)

M
ed

ia
n 

Lo
gM

AR
 B

C
VA

 
im

pr
ov

ed
 fr

om
 0

.2
2 

be
fo

re
 to

 0
.1

 a
t l

as
t v

is
it

BC
VA

, b
es

t-c
or

re
ct

ed
 v

isu
al

 a
cu

ity
; L

og
M

AR
, l

og
ar

ith
m

 o
f t

he
 m

in
im

al
 a

ng
le

 o
f r

es
ol

ut
io

n;
 P

DT
, p

ho
to

dy
na

m
ic

 th
er

ap
y.



Nat Cell Sci 2025;3(2):112–122 
https://doi.org/10.61474/ncs.2025.00007

Nature Cell and Science | www.cellnatsci.com118

second category by including adjacent normal retina, and 
potentially treating the fovea to reinforce barrier functions 
and offer both therapeutic and preventive benefits. This can 
include applying photocoagulation to a disc-diameter area 
centered on the leakage point or utilizing OCT to identify se-
rous retinal detachment areas.86

In a randomized controlled trial involving patients with 
acute CSC, SDM laser treatment significantly improved 
BCVA and contrast sensitivity compared to observation 
alone. Additionally, it reduced recurrence rates of neurosen-
sory detachment without any adverse effects, suggesting 
that SDM laser is a superior therapeutic option for manag-
ing acute CSC.84 Another retrospective case series indicates 
that subthreshold MicroPulse diode laser treatment may ef-
fectively reduce macular thickness and improve visual out-
comes in patients with symptomatic chronic CSC, demon-
strating its potential as a treatment option for this condition.86 
Furthermore, a randomized controlled trial shows that both 
532 nm and 810 nm subthreshold micropulse lasers provide 
comparable efficacy and safety in improving BCVA and re-
solving SRF over six months in patients with non-resolving 
CSC, with no observed adverse effects from either laser 
treatment.87

Laser photocoagulation
Laser photocoagulation therapy is currently regarded as one 
of the most effective methods for treating CSC, with minimal 
complications.88 This treatment involves using a laser to co-
agulate the leakage points in the RPE, thereby sealing RPE 
defects, enhancing the healing response of damaged RPE, 
and stimulating healthy RPE cells to participate in tissue re-
pair.89 Alternatively, it can directly activate the pump function 
of RPE cells adjacent to the leakage area, promoting the 
absorption of SRF.

Currently, there is no unified and widely recommended 
standard protocol for energy parameter settings in laser 
treatment for CSC. Treatment plans are typically adjusted 
based on individual patient needs by the physician. Maltsev 
et al.90 adjusted the laser power in the extrafoveal region 
to achieve minimal visible retinal damage as the treatment 
endpoint. Ambiya et al.91 used a 577 nm yellow laser, titrated 
to produce a barely visible burn (mild retinal whitening effect) 
outside the vascular arcade, with a continuous wave laser 
having a test spot size of 100 µm and an exposure time of 
0.1 seconds.

Regarding the effectiveness of laser treatment, Hara et 
al.92 demonstrated that focal laser therapy can significantly 
reduce the volume of choroidal vessels and stroma, with ef-
ficacy comparable to PDT. Research by Maltsev et al.93 in-
dicated that in patients with CSC complicated by secondary 
CNV, complete resolution of SRF was achieved within 1.1 
± 0.4 months post-laser treatment, with follow-up at 11.5 ± 
7.5 months showing no deterioration in anatomy or vision. 
Compared to half-dose PDT, focal laser photocoagulation 
demonstrates comparable anatomical and functional recov-
ery during follow-up periods of three to 36 months. However, 
during the three-year follow-up, focal laser photocoagulation 
exhibited a higher recurrence rate.94,95 Therefore, while fo-
cal laser photocoagulation shows definitive efficacy in terms 
of anatomical and functional recovery, it may be associated 
with a higher recurrence rate in long-term follow-up. This 
could be attributed to the fact that CSC is primarily caused 

by choroidal capillary dilation and leakage, which focal la-
ser photocoagulation does not adequately address. Further-
more, laser treatment is unsuitable for leakage points locat-
ed beneath the foveal center or within the avascular zone of 
the macula due to the destructive nature of its mechanism.

Anti-vascular endothelial growth factor therapy (VEGF)
In clinical practice, anti-VEGF agents, such as ranibizumab 
and bevacizumab, are frequently administered via intravit-
real injections. These drugs function by reducing choroidal 
capillary permeability and limiting neovascularization, there-
by decreasing SRF.96 This approach is commonly used for 
treating CNV secondary to age-related macular degenera-
tion. Clinical trials related to CSC suggest that anti-VEGF 
therapy may be beneficial for patients with prolonged dis-
ease duration and CNV resulting from RPE decompensa-
tion, particularly in those concurrently experiencing Type 1 
CNV.97 However, robust evidence supporting the efficacy of 
this treatment in CSC associated with CNV remains limited. 
For patients who are averse to frequent intravitreal injec-
tions, a combination of anti-VEGF therapy and PDT may be 
considered. Overall, the therapeutic potential of anti-VEGF 
agents may be confined to CSC cases with concurrent CNV, 
and their efficacy still requires further validation.98 Currently, 
anti-VEGF medications are not established as a first-line 
treatment modality for CSC.99 Continued exploration through 
pathophysiological studies, foundational experiments, and 
clinical trials is essential to better understand their role and 
effectiveness in this context.100

Oral mineralocorticoid receptor antagonists (MRAs)
Research has demonstrated that both endogenous and ex-
ogenous corticosteroids can bind not only to glucocorticoid 
receptors but also to mineralocorticoid receptors (MRs).101 
Excessive stimulation of MR can lead to vasodilation and 
increased osmotic pressure, resulting in the accumulation 
of SRF. MRAs can inhibit the binding of glucocorticoids or 
mineralocorticoids to MR, thereby suppressing vasodilation. 
Overactivation of the MR pathway is considered one of the 
pathological mechanisms in the development of CSC.102

The primary MRAs used clinically are spironolactone (a 
diuretic) and eplerenone (an antihypertensive agent).103 
Oral spironolactone has been shown to yield significant 
improvements in central macular thickness, SRF height, 
and subfoveal choroidal thickness in patients with CSC, al-
though visual acuity remains unchanged. Recurrence is no-
tably higher, especially in older patients and those with prior 
bevacizumab treatments, although no permanent adverse 
effects have been reported.103 Spironolactone significantly 
reduces SRF and subfoveal choroidal thickness in patients 
with nonresolving CSC, with no observed impact on BCVA 
or treatment-related complications.104 Eplerenone has been 
found to be safe but not significantly more effective than pla-
cebo in enhancing BCVA for patients with chronic CSC over 
a 12-month period, suggesting the need for further explora-
tion of alternative treatments for this challenging condition. 
Furthermore, trials have indicated that oral eplerenone is 
effective for chronic CSC, resulting in significant reductions 
in central SRF height, central macular thickness, and sub-
foveal choroidal thickness, along with a notable improve-
ment in mean BCVA.105 In summary, oral MRAs, particularly 
eplerenone, appear to be effective for chronic persistent and 
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recurrent CSC. Nonetheless, further randomized controlled 
trials are required to confirm their efficacy and explore opti-
mal dosing and administration strategies. The oral adminis-
tration route offers the advantage of avoiding potential tissue 
damage associated with other treatment modalities, sug-
gesting that low-dose oral MRAs may become a promising 
alternative for the treatment of persistent and recurrent CSC 
in the future.

This review has several limitations. Firstly, although some 
research has been conducted on the potential mechanisms 
of CSC, the underlying complexities are not fully understood, 
and the relative contributions of various risk factors, such 
as psychological stress, hormonal influences, and genetic 
susceptibility, remain contentious. Secondly, despite sig-
nificant advancements in imaging techniques, such as OCT 
and OCTA, data regarding the long-term efficacy and safety 
of emerging therapeutic approaches are still limited. Lastly, 
this review does not delve deeply into the psychological 
and psychosocial factors associated with CSC, which may 
significantly impact patient management and treatment out-
comes. Therefore, future research needs to address these 
limitations and further elucidate the multifactorial nature of 
CSC to aid in the development of more targeted therapeutic 
strategies.

Conclusions
CSC is characterized by choroidal vasodilation resulting 
from dysregulation of the CRH and glucocorticoid axes un-
der stress conditions, leading to disruption of the RPE tight 
junctions. PDT was once the first-line treatment option, while 
other therapeutic approaches continue to evolve. With ad-
vancements in imaging and genetic testing technologies, our 
understanding of the pathogenesis of CSC has significantly 
deepened. Oral medications and gene therapy may emerge 
as potent preventive and therapeutic methods, while laser 
photocoagulation and intravitreal injections may effectively 
alleviate local symptoms. With the rapid emergence of novel 
technologies, there is optimism that CSC may soon be ef-
fectively and promptly treated.
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