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Introduction
Parkinson’s disease (PD) is classically diagnosed by move-
ment disorders, including bradykinesia, rigidity, tremor, and 
postural instability.1 Eventually, motor symptoms such as 
tremors, rigidity, slow movement, depression, and demen-
tia become evident.2 Biochemically, these symptoms result 
from dopamine (DA) depletion in the projections from the 
substantia nigra pars compacta to the striatum,3,4 particularly 
in the nigrostriatal pathways. This depletion is probably due 
to aging, brain injury, toxicity, or other factors; hence, PD is 
still considered an idiopathic disorder. Several mechanisms 
have been implicated in PD pathogenesis, with α-synuclein 
aggregation being central to disease development. In famil-
ial cases of PD, many genes are involved, especially as ab-
normal intra-neuronal aggregates of α-synuclein, also called 
Lewy bodies, are found in the PD brain.5,6 Multiple other 
processes are thought to contribute, with several studies 
suggesting that abnormal protein clearance, mitochondrial 
dysfunction, and neuroinflammation play roles in PD onset 
and progression. However, the relationships between these 

pathways remain unclear.7 In brief, genetic susceptibility 
and environmental factors,7 which may cause endoplasmic 
reticulum stress,8 mitochondrial dysfunction, inflammation, 
and disruption of the autophagy system,9 contribute to PD 
development.

Currently, there is no cure for PD. Levodopa was intro-
duced in the 1960s to replenish DA loss, but it serves only 
as a palliative treatment. Furthermore, chronic use of levo-
dopa may result in significant adverse effects such as ni-
grostriatal degeneration and dyskinesia.10 Other therapeutic 
approaches—including cell therapy, gene therapy, and deep 
brain stimulation—are still in the trial stages.

In this context, nutritional management offers a promising 
option to help control disease symptoms, as foods contain 
antioxidants, trace metals, and energy that may help coun-
teract cognitive decline and muscle weakness. Epidemio-
logical and biochemical studies suggest that the right choice 
of foods can help manage PD symptoms.11–20 Recent stud-
ies have revealed that certain nutrients may reduce the risk 
of PD, while others may contribute to neurodegeneration or 
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exacerbate disease progression.21 This review summarizes 
studies addressing these issues and describes in detail the 
nutrients and their putative mechanisms of action in PD. In 
particular, we will focus on the types of foods that promote or 
slow PD symptoms.

The effects of macro-nutrients on PD symp-
toms
Carbohydrates
Carbohydrates can allow the DA precursor, the amino acid 
tyrosine, to cross the blood-brain barrier into the cerebro-
spinal fluid and increase DA production there.22,23 In fact, 
carbohydrates indirectly facilitate the passage of tyrosine 
through the blood-brain barrier by influencing the ratio of 
amino acids in the blood. High-carbohydrate meals increase 
the plasma tyrosine-to-large neutral amino acids ratio, pro-
moting tyrosine uptake into the brain.24,25 Carbohydrate-rich 
foods that are rapidly broken down and absorbed into the 
bloodstream are categorized as high-glycemic index (GI) 
foods. High-GI foods lead to a rapid increase in blood glu-
cose and insulin levels following ingestion. In contrast, low-
GI foods are digested more slowly, resulting in a smaller and 
slower postprandial blood glucose and insulin response. 
High-GI carbohydrates can cause a rapid increase in blood 
sugar levels and trigger insulin release from the pancreas. 
This insulin, in turn, stimulates DA release in the brain. Since 
PD is characterized by a lack of DA, this mechanism might 
provide temporary compensation.26

Furthermore, carbohydrates with a high glycemic index 
may decrease the risk of PD by increasing DA production in 
the brain through insulin release.26 However, there is also a 
risk that high-carbohydrate diets may increase the incidence 
of type 2 diabetes mellitus,27–29 which may increase the risk 
of PD with severe motor symptoms.30–34

Fat
In animal studies, it was shown that a high-fat diet can de-
plete DA levels in the substantia nigra and aggravate Par-
kinson’s symptoms.35–37 Epidemiological studies in humans 
have demonstrated that a higher number of PD cases oc-
cur among individuals who consume large amounts of total 
animal fat.38–41 In one experiment, a higher-fat diet (Western 
diet ) and a control diet (standard lab chow) were compared 
for their effects on the mesolimbic DA system. Twenty male 
C57BL/6J mice were placed on one of these diets at seven 
weeks of age. After twelve weeks, in vivo fixed potential 
amperometry was used to measure real-time stimulation-
evoked DA release in the nucleus accumbens of anesthe-
tized mice before and after intraperitoneal injection of the 
dopamine transporter (DAT) inhibitor nomifensine.

Results indicated that diet altered mesolimbic DA func-
tion: mice that consumed the Western diet demonstrated a 
hypodopaminergic profile, specifically reduced baseline DA 
release and an attenuated dopaminergic response to DAT 
inhibition compared to the control diet group. Thus, diet may 
play a role in mediating DA-related behavior, disorders asso-
ciated with DA dysfunction, and pharmacological treatments 
aimed at altering DA transmission.42,43

Researchers studying the effects of high-fat diets (HFDs) 
on DA levels in rodents often use a 60% fat diet for two weeks 

to observe changes compared to a control group on a low-
er-fat diet. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP)-treated macaques, six weeks of oral docosahexae-
noic acid (DHA, 30 mg/kg/day) reduced levodopa-induced 
dyskinesia by 40%, as measured by the Parkinsonian scale 
developed at Laval University.44 This type of study is used to 
investigate how diet impacts the DA reward system and its 
relation to behavioral changes. One study aimed to examine 
early changes in behavior and brain dopaminergic function 
in young mice fed a HFD. Results showed that initial signs of 
weight gain and behavioral deficits started in the third month 
of HFD intake. By the end of the fifth month, the mice fed 
the HFD had increased DA and dopamine receptor D2 lev-
els in the midbrain, while DAT levels remained unchanged. 
This research contributes to the fields of nutrition and neu-
roscience, as identifying early behavioral deficits may reflect 
initial dysregulation of dopaminergic or other neurochemical 
pathways, which is critical for understanding the progression 
of brain disorders induced by HFD.45

Previously, it was found that one-month-old C57BL/6J 
mice fed an HFD gained significantly more body weight af-
ter four months than mice fed the control diet, despite no 
difference in total food consumption between the groups. 
This increase in body weight is consistent with other reports. 
For example, a study using young adult C57BL/6J mice (2 
months old) showed significant weight gain after two months 
on an HFD.46

Another study found that HFD caused young C57BL/6J 
mice to weigh 12.4% more than controls after six weeks, 
even though the HFD group consumed less food per day.47 
Finally, a study using male Wistar rats aged 14–16 weeks 
also found significant differences in body weight after four 
weeks of HFD exposure.48

These results indicate that rodent models from different 
age groups chronically fed an HFD display greater body 
weight compared to animals fed control diets. The rate of 
weight gain on any diet is always a function of age; for ex-
ample, adult animals might gain weight more quickly due to 
their slower metabolic rate compared to younger animals.49 
Identifying the initial time point for body weight gain and 
motor behavioral deficits is essential for understanding the 
impact of HFD in C57BL/6J mice. Such knowledge may 
help reveal underlying neurophysiological and behavioral 
conditions that depend on caloric intake. For example, ca-
lorically restricted C57BL/6J mice have shown improved 
cardiometabolic health, hippocampal RNA expression, 
nutrient-sensing pathways, age-dependent cognitive func-
tion, and dendritic spine density compared to mice fed a 
control diet.50

In contrast, HFD-fed mice showed weight gain, impaired 
glucose tolerance, deficits in hippocampal-dependent mem-
ory and learning, mood disturbances, and depression-like 
behavior.47 Such results indicate that caloric intake and the 
time course of weight gain play crucial roles in the etiology of 
normal brain function (or dysfunction).48

However, a ketogenic diet, which is also high in fat, has 
shown some disease-modifying activity in PD.46 Yet, some 
studies have reported no significant differences in Unified 
Parkinson’s Disease Rating Scale scores or motor function 
after 28 days of a ketogenic diet compared to low-fat diets. 
Other research suggests that the ketogenic diet might not be 
superior to other dietary approaches in terms of physical per-
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formance.49 Therefore, although the biological mechanisms 
linking ketosis and PD are promising, existing evidence from 
clinical trials is not conclusive enough to recommend it as a 
standard treatment.50

This may be partly due to the lower protein content (only 
∼8%) in the ketogenic diet, which improves the bioavail-
ability of levodopa, a precursor of DA. Mounting evidence 
shows that saturated fat impacts DA neurons and their ter-
minal fields, but little is known about the effect of a diet high 
in unsaturated fat on the DA system. However, Barnes et 
al.51 showed that a diet high in unsaturated fat may preserve 
normal metabolic and behavioral parameters as well as DA 
signaling in the nucleus accumbens.

Polyunsaturated fatty acids and monounsaturated fatty 
acids can reduce the risk of PD.52,53 Polyunsaturated fatty 
acids exhibit anti-inflammatory and neuroprotective proper-
ties.54–57 while monounsaturated fatty acids can reduce oxi-
dative stress.58,59 Furthermore, α-linolenic acid, an essential 
fatty acid, can protect brain cells from oxidative stress and 
inflammation,60–62 thereby benefiting PD patients.63

High levels of cholesterol, which is required for cell mem-
branes, have been found to be associated with decreased 
PD symptoms, but only in women, not in men.53 More re-
cently, the role of fat in PD is thought to depend on the type 
of fat. For example, the high-density lipoprotein/low-density 
lipoprotein ratio in the patient’s diet is inversely related to 
disease duration and provides cardiometabolic protection in 
PD.53,64 While higher cholesterol levels might be associated 
with a lower risk of PD, the exact role of cholesterol in PD 
pathogenesis is still under investigation. Research suggests 
that cholesterol plays a crucial role in the structure and func-
tion of neuronal cell membranes and synapses.

Some studies have indicated that higher low-density li-
poprotein cholesterol levels might be linked to slower pro-
gression of motor and executive dysfunction in individuals 
with PD. However, other studies have shown that choles-
terol deficiencies in nerve cells can cause defects in cell 
membranes, potentially leading to neurodegeneration. In 
conclusion, while higher cholesterol levels may be asso-
ciated with a lower risk of PD and some studies suggest 
a protective role, the exact mechanisms and cholesterol’s 
role in PD development and progression remain under in-
vestigation, with some research showing contradictory re-
sults.65

Omega-3
Dietary supplementation with omega-3 fatty acids, including 
DHA and eicosapentaenoic acid (EPA), has been shown to 
increase DA levels and D2 receptor binding, and to reduce 
monoamine oxidase B activity in the prefrontal cortex and D2 
receptor binding in the striatum.66,67

DHA can also inhibit nitric oxide (NO) production and 
calcium influx, thereby reducing apoptosis of dopaminergic 
cells.68 Additionally, DHA may protect the brain by increas-
ing the activities of glutathione peroxidase and glutathione 
reductase, both antioxidant enzymes.69 Short-term ad-
ministration of DHA has been shown to reduce levodopa-
induced dyskinesia by 40% in Parkinsonian primates.44 In 
MPTP-treated macaques, a six-week oral DHA regimen (30 
mg/kg/day) reduced levodopa-induced dyskinesia by 40%, 
as measured using the Parkinsonian scale developed at 
Laval University.44 EPA is also a neuroprotective agent, as 

observed in experimental models of PD.70–72 In one study 
using a head injury model, 40 adult male Sprague-Dawley 
rats received dietary supplementation with n-3 fatty acids 
(EPA:DHA = 2:1) at dosages of 10 or 40 mg/kg/day starting 
on post-injury day one. The authors found that, compared 
to injured rats on a control diet, n-3 fatty acids significantly 
reduced the number of beta-amyloid precursor protein-pos-
itive (injured) axons at 30 days post-injury, achieving levels 
similar to those in uninjured animals.73 A diet rich in EPA can 
reduce hypokinesia in MPTP-induced mouse models and 
protect against memory decline.73

Effects of proteins

Meat
A positive association between red meat consumption and 
PD may be due to its heme content, which, when not di-
gested properly, can act as a toxin, producing hydroxyl radi-
cals and causing mitochondrial damage.74 However, the evi-
dence for this association is conflicting.75

Fish
Omega-3s and the calcium-binding protein parvalbumin are 
abundant in fish muscle tissue, especially in herring, cod, 
carp, redfish, salmon, and red snapper. These compounds 
can inhibit the formation of abnormal α-synuclein aggre-
gates, which are associated with the onset of PD.76,77

Several epidemiological studies have revealed that adher-
ing to a diet containing fish oil is associated with a reduced 
incidence of PD. A follow-up study interviewing 131,368 peo-
ple about their food intake reported that consuming a diet 
rich in fish oil was associated with a decreased risk of PD.78 
Similarly, another epidemiological study involving over 5,000 
patients verified that a diet rich in fish oil is directly associ-
ated with a lower risk of PD development.79

In addition, laboratory research showed that fish oil con-
sumption for seven days can restore DA levels in the brains 
of rats with traumatic brain injury, which is associated with an 
increased risk of PD.80 Overall, fish is a recommended food 
for PD patients.81

Eggs
Beneficial nutrients for brain health, such as vitamin D and 
omega-3 fatty acids, are present in eggs.82 However, the 
protein content in eggs may interfere with the absorption of 
levodopa medication if taken together.83

Effects of micronutrients (vitamins and trace 
metals) on PD: Vitamins D, C, and E
•	 Vitamin D deficiency is prevalent in PD patients,84 but it is 

not known whether vitamin D deficiency causes PD. Vita-
min D plays a role in regulating calcium homeostasis,85,86 
and disruption can cause the loss of dopaminergic neu-
rons.87 In animal and cell culture models of PD, vitamin 
D supplementation was found to slow disease progres-
sion.88,89 However, in humans, results were opposite, with 
vitamin D increasing the risk of PD,89 indicating the need 
for more careful research in this area.

•	 Vitamin C (ascorbic acid) is highly effective in reducing 
lipid peroxidation levels and increasing catalase activity.90 
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However, the association between vitamin C and PD risk 
remains inconclusive, as other studies did not find a sig-
nificant correlation.91,92

•	 Vitamin E, a lipid-soluble vitamin that provides protec-
tive effects on DA neurons in the substantia nigra pars 
compacta and reduces DA loss in in vitro and in vivo ex-
periments.91,92 Pre-treatment with vitamin E reduces lipid 
peroxidation levels.93 A meta-analysis showed a protec-
tive effect of vitamin E against PD in humans94; however, 
clinical trials with PD patients did not show such neuropro-
tective functions.95,96

•	 Trace metals, Iron-induced oxidative stress is a known 
factor in PD pathogenesis. Clinical trials with iron che-
lators (such as deferiprone) have yielded mixed results, 
with some showing no benefit and others indicating po-
tential benefits.97

Other foods and drinks associated with de-
creased or increased risk of PD
•	 Fruits and vegetables: Most fruits and vegetables are rich 

sources of various phytochemicals, including antioxidants 
and vitamins A, B (riboflavin), C, and E. These compounds 
can inhibit lipid peroxidation, as well as glutathione per-
oxidase activity and glutathione levels in the substantia 
nigra.98,99 In mice, pretreatment with β-carotene partially 
protects against MPTP-induced neurotoxicity,100,101 but 
this effect is not seen in primates.102 Additionally, low in-
take of vitamin B6 has been associated with an increased 
risk of PD.103 Cruciferous vegetables such as cauliflower, 
cabbage, and broccoli are rich in antioxidants like sul-
foraphane and erucin, which have significant neuropro-
tective capacity.104,105

•	 Soy (Genistein): The primary soybean isoflavone, gen-
istein, is a source of protein with neuroprotective capacity. 
These results were found in chemically induced ovariec-
tomized rat models, suggesting that soy may be useful for 
the prevention of PD in postmenopausal women.106 Fur-
ther, genistein can inhibit microglia activation and neuron 
loss in PD.107

•	 Dairy products: Consumption of dairy products and milk 
may increase the risk of PD.108–111 Additionally, the pos-
sible presence of dopaminergic neurotoxins, such as pes-
ticides and polychlorinated biphenyls in dairy products, 
may increase PD risk.109

Drinks

Caffeine
Epidemiological studies support an inverse relationship be-
tween PD and coffee consumption.112–114 Generally, animal 
studies also indicate that caffeine is neuroprotective. Ad-
ministration of caffeine to manganese ethylene-bis-dithio-
carbamate and paraquat-treated rodents, while normalizing 
the expression of interleukin-1 beta, p38 alpha mitogen-ac-
tivated protein kinase, nuclear factor kappa B, and tyrosine 
kinase, reduced the number of degenerating dopaminergic 
neurons.115,116 Both acute and chronic administration of caf-
feine can also reduce the loss of striatal DA in rats treated 
with MPTP and 6-hydroxydopamine.117,118

Genetic and pharmacological studies in rodents indicate 
that caffeine can reduce dopaminergic toxicity and slow dis-

ease progression through inhibition of adenosine receptor 
subtype A2A.119–121 Currently, clinical studies are underway 
to evaluate A2A receptor antagonism for symptomatic relief 
or slowing PD progression.122 Caffeine can also activate 
the phosphatidylinositol 3-kinase/protein kinase B signal-
ing pathway, as shown in SH-SY5Y cells.123 Therefore, it is 
speculated that caffeine might downregulate NO production, 
neuroinflammation, and microglial activation, contributing to 
neuroprotection.124

Tea
Several epidemiological studies and experiments with PD 
animal models have shown that regular tea consumption can 
protect against the onset of PD.125–127 Polyphenols in tea 
extracts are potent antioxidants that exhibit radical scaveng-
ing activities and provide neuroprotection in cell culture and 
animal models.128–131 Theaflavins, a group of polyphenols 
found in both black and oolong tea, possess various phar-
macological properties such as antioxidative, anti-apoptotic, 
and anti-inflammatory effects.132,133 Theaflavin-mediated 
neuroprotection in MPTP-induced PD animal models was 
demonstrated by reduced expression of apoptotic markers 
and increased expression of nigral tyrosine hydroxylase 
and DAT enzymes.134 Epigallocatechin-3-gallate, present in 
green tea, has shown the ability to reduce NO production in 
MPTP mouse models of PD, providing further evidence for 
its neuroprotective properties.135 In contrast, another study 
using 6-hydroxydopamine-lesioned rats found only subtle 
symptomatic relief but no neuroprotection at similar doses of 
epigallocatechin-3-gallate.136 This discrepancy may be due 
to differences in the mechanisms by which these chemicals 
induce PD-like lesions in animals.137

Alcohol
Alcohol is believed to be neuroprotective concerning PD 
lesions.138 A recent study supports that low to moder-
ate beer consumption lowers the risk of PD; however, 
alcohol addiction may have the opposite effect.139 Other 
studies have shown that the main components of alcohol, 
such as resveratrol and quercetin, are neuroprotective. 
These compounds can prevent behavioral, biochemical, 
and histopathological changes in MPTP-induced mouse 
models.140,141 Biochemically, resveratrol scavenges free 
radicals, thereby preventing inflammation and apoptosis 
of dopaminergic neurons.142–144 However, epidemiological 
studies do not support any benefit from red wine consump-
tion regarding PD symptoms.144

Pro/Con evidence for major dietary approach-
es (Mediterranean, ketogenic, etc.)
Both the Mediterranean diet and the ketogenic diet show 
promise for individuals with PD, though their mechanisms 
and effects differ. The Mediterranean diet, rich in whole 
grains, fruits, vegetables, and healthy fats, is associated 
with a reduced risk of PD and may help manage non-motor 
symptoms like constipation and improve cognitive function. 
The ketogenic diet, a high-fat, low-carbohydrate diet, focus-
es on inducing ketosis, potentially improving brain function 
and alleviating some PD symptoms, including non-motor 
symptoms. The differences of the activities between the 
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Mediterranean and the Ketogenic diets on PD are portrayed 
in Table 1.145–150

Brain–gut–microbiome interactions and inter-
mittent fasting (IF) in PD symptoms
IF can alter the gut microbiome, potentially influencing PD 
symptoms. IF may shift the balance of gut bacteria, increas-
ing diversity and promoting beneficial microbes. Sex-specific 
nutritional responses also play a role, with some studies sug-
gesting that men may be more responsive to IF-induced im-
provements in cardiometabolic health compared to women. 
The gut microbiome is known to interact with the brain through 
the gut-brain axis, and alterations in the gut microbiome could 
potentially influence PD development and progression.
•	 Changes in the gut microbiome could impact various as-

pects of PD, including motor and non-motor symptoms.151

•	 Some research indicates that the effects of polyphenols 
on gut microbiota and metabolic health may be sex-spe-
cific, with men showing greater responsiveness to certain 
polyphenols.

•	 Animal studies suggest that IF can protect neurons, im-
prove motor function, and reduce alpha-synuclein burden 
in the brainstem, a key area affected in Parkinson’s.

•	 Some studies also suggest IF may have neuroprotective 
effects by promoting autophagy (cellular cleanup) and re-
ducing oxidative stress.152

•	 More research is needed to explore the specific effects of 
IF on the gut microbiome in individuals with PD and to de-
termine whether IF can be used as a therapeutic strategy 
for managing PD symptoms.

Translational considerations
This subsection discusses practical dietary recommendations 
for clinicians and patient adherence challenges. Clinicians 
can provide practical dietary recommendations focused 
on overall health, including a balanced diet rich in fruits, 
vegetables, whole grains, and lean protein, while minimiz-
ing saturated fat, added sugars, and sodium. Adherence 
challenges include lack of motivation, time constraints, and 
affordability of healthy food options, alongside the influ-
ence of marketing and social factors. Strategies to improve 

adherence include education, personalized guidance, and 
social support.153

Practical dietary recommendations
Focus on a balanced diet that includes higher-fiber starchy 
carbohydrates, lean proteins, and healthy fats, along with at 
least five servings of fruits and vegetables daily.154 Whole 
grain products are recommended over refined grains for bet-
ter nutrition and to avoid vitamin deficiencies.155

Limit saturated fats, sugars, and sodium (<2.3 g per day) 
to promote cardiovascular health.156 Trans-fats should be 
completely avoided. Additionally, portion control, rather than 
overeating, is important for maintaining good health.157 Ad-
dress social and cultural issues wisely so they do not abrupt-
ly influence your dietary choices.158 Along with these dietary 
recommendations, regular leisure-time physical exercise, at 
least one hour daily, is highly recommended to maximize nu-
tritional benefits.

Clinical translation challenges, gaps in cur-
rent evidence, and priority directions for fu-
ture research
PD research has progressed enormously in recent years, un-
locking the mysteries of Parkinson’s and making treatments 
that restore lost function, halt disease progression, and pre-
vent the condition more realistic goals. Several genetic muta-
tions that increase susceptibility to PD have been identified, 
and breakthroughs in genetic research have made finding new 
genetic factors easier and more efficient. A number of promis-
ing new therapies have been developed and are currently be-
ing tested in animals as well as humans. Additionally, research 
into the underlying biology of the disease, environmental in-
fluences, and new biomarkers is ongoing. There is hope that 
new therapies will continue to improve symptom relief, reverse 
progression, or even prevent the occurrence of PD.159,160

Advances in neural circuitry research have also acceler-
ated rapidly in recent years. A wide spectrum of tools and 
techniques can now map connections between neural cir-
cuits. Using animal models, scientists have shown how neu-
ral circuits in the brain of zebrafish work precisely in behavio-
ral responses such as seeking and capturing food. Together, 

Table 1.  Differences of Activities of the Mediterranean diet and the Ketogenic diet in relation to PD

Potential beneficial effects on PD Mediter-
ranean diet

Ketogen-
ic diet

Antioxidant effects Yes No
Specific nutrients and PD risk: Iron: potential pro-oxidant effects; Vitamins K and C: antioxidant 
properties. Potential influence on dopamine metabolism;145 Neuroprotection via polyphenols. 
Improved gut microbiome composition146–148

Yes No

Enhanced mitochondrial function. Neuroprotection via ketone bodies No Yes
Potential anti-inflammatory effects No Yes
May improve both motor and non-motor symptoms. 
Particularly beneficial for non-motor symptoms

No Yes

Potential for metabolic health149,150 No Yes

PD, Parkinson’s disease.
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these studies may yield tools and technologies that deepen 
our understanding of how the nervous system functions in 
health and disease, including PD.161,162

Patient adherence challenges
•	 Lack of motivation: Patients may struggle to prioritize 

healthy eating when it conflicts with other priorities or 
habits.163

•	 Time constraints: Busy schedules can make it difficult to 
plan and prepare healthy meals.164

•	 Cost of healthy food: The price of healthy foods can be 
a barrier for some individuals, especially those with low 
incomes.165

•	 Marketing of unhealthy foods: Aggressive marketing of 
unhealthy foods can influence food choices.164

•	 Food insecurity: Lack of access to affordable and nutri-
tious food can limit healthy eating.164

•	 Social factors: Family eating habits, cultural norms, and 
social gatherings can impact dietary choices.164

•	 Lack of information: Some individuals may lack knowl-
edge about healthy eating principles.164

•	 Difficulty adjusting habits: Changing established eating 
patterns can be challenging.165

Strategies for enhancing adherence
•	 Education: General strategies include education, moti-

vation, behavioral skills training, use of newly available 
modified foods on the market, and interpersonal interac-
tions.166

•	 Provide clear and concise information about healthy eat-
ing, including its benefits and how to make changes.167

•	 Personalized guidance: Offer tailored recommendations 
and support based on individual needs and circumstanc-
es.166

•	 Energy to overcome cognitive decline: This study sug-
gests that individuals with worse cognitive function may 
choose to eat “neuroprotective components” earlier in the 
day, when cognitive performance is better. A meal pattern 
characterized by high energy consumption in the morn-
ing or low energy intake at the end of the day could be a 
marker of cognitive impairment.

•	 Motivational counseling: Help patients identify their own 
reasons for wanting to make dietary changes and develop 
strategies for success.

•	 Behavioral skills training: Teach patients skills such as 
goal setting, self-monitoring, and problem-solving to over-
come challenges.164

•	 Social support: Encourage patients to connect with sup-
portive friends, family, or support groups.164

•	 Consider cultural and social factors: Acknowledge and 
address cultural or social influences that may impact di-
etary choices.166

•	 Utilize resources: Refer patients to local food banks, com-
munity gardens, or other resources that can help them 
access affordable and nutritious foods.

•	 Address lack of information: Provide education to indi-
viduals who may lack knowledge about healthy eating 
principles.167

Discussion
In view of the above information regarding the effects of dif-

ferent food components on PD, various dietary patterns can 
be considered. For example, a protein-restricted diet may 
help improve the absorption of the PD drug levodopa.168 
However, there is a risk of adverse effects due to a shortage 
of some essential amino acids, which may require protein 
supplementation.169

A ketogenic diet, which is very low in carbohydrates,170,171 
has been shown to potentially alleviate PD symptoms.172 
However, the ketogenic diet may cause significant weight 
loss.173 Therefore, more safety research is needed, espe-
cially regarding the relationship between weight loss and 
cognitive benefits, before recommending long-term adher-
ence to the ketogenic diet.

The Mediterranean diet represents a dietary pattern rich 
in fruits, vegetables, legumes, cereals, nuts, fish, and mon-
ounsaturated fatty acids, with moderate alcohol intake but 
low consumption of dairy products and red meats.174 Previ-
ous studies have reported multiple beneficial effects of the 
Mediterranean diet, including positive impacts on depres-
sion,175–177 Alzheimer’s disease,178 and neurodegeneration. 
However, case–control and cohort studies have yielded 
mixed results regarding the benefits of the Mediterranean 
diet in PD prevention and progression.147,179–183 Therefore, 
further research is needed to better understand the impact of 
the Mediterranean diet on PD. The combination of the Medi-
terranean diet and the DASH diet into a single Mediterra-
nean-Dietary Approaches to Stop Hypertension Intervention 
for Neurodegenerative Delay dietary pattern has shown a 
reduced risk of PD and cognitive decline in both men and 
women.147,181 Based on these findings, we can illustrate the 
key nutrient pathways affecting PD pathology and nutritional 
interventions (Fig. 1).

Most selected studies include one by Bianchi et al.,183 
who investigated the effects of malnutrition and the Medi-
terranean diet on PD incidence and progression. Other 
investigations contributed evidence on the critical roles of 
microbiota, vitamins, polyphenols, dairy products, coffee, 
and alcohol intake. This review included fifty-two studies 
that met the inclusion criteria. This study suggests that in-
dividuals with worse cognitive function may choose to eat 
earlier during the day when cognitive performance is better. 
It is hypothesized that a meal pattern characterized by high 
energy consumption in the morning or low energy intake at 
the end of the day could be a marker of cognitive impair-
ment.183

Another study by Ó Breasail et al.184 examined the link be-
tween PD and the gastrointestinal tract, based on the Braak 
hypothesis, although only circumstantial evidence currently 
exists. The role of empirically observed phenomena such 
as small bowel gastrointestinal overgrowth is not yet fully 
understood, particularly regarding its importance in the pro-
dromal phase. The impact of Helicobacter pylori infection on 
dyskinesia also remains unclear. Adequately powered and 
well-designed randomized controlled trials are required to 
assess these links.184

Overall, PD is a neurodegenerative disorder associated 
with diminished nutritional status and quality of life. Since no 
preventive or curative therapy currently exists for PD, nutri-
tion and diet represent modifiable risk factors for reducing 
disease risk. Nevertheless, more research is needed to ex-
plore these relationships and the impact of specific diets and 
dietary patterns.
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Conclusions
There are still many concerns regarding the association be-
tween PD and nutrition, possibly due to underlying genetic 
and environmental factors. However, a body of evidence re-
veals that correcting malnutrition, modulating gut microbiota, 
and following the Mediterranean diet reduce the onset of PD 
and slow clinical progression. Other factors, such as poly-
phenols, polyunsaturated fatty acids, and coffee intake, may 
have potential protective effects. Conversely, milk and dairy 
products may increase the risk of PD. Nutritional intervention 
is essential for neurologists to improve clinical outcomes and 
reduce disease progression in PD.

In conclusion, dietary interventions for PD management 
provide promising potential. However, their full integration 
into personalized medicine, considering timing and indi-
vidual variation, still depends on rigorous scientific research 
to clarify their mechanisms of action, efficacy across patient 
populations, and safety profiles.
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