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Introduction
Muscle degeneration, characterized by structural and function-
al loss in muscle tissue, is a significant concern following vari-
ous surgical procedures. In rotator cuff tears, muscle atrophy 
and fatty infiltration are known predictors of poor surgical out-
comes.1 After spinal surgery, back muscle degeneration can 
occur, with fatty changes being the most common—though 
not always correlated with pain.2 In cardiomyoplasty, surgical 
dissection of the latissimus dorsi muscle results in substantial 
damage and morphological abnormalities, which are further 
aggravated by chronic stimulation.3 Muscle atrophy occurs 
when protein degradation exceeds protein synthesis, typically 
due to factors such as disuse, aging, or systemic disease. In 
contrast, hypertrophy involves increased protein synthesis 
and cellular enlargement.4 Understanding these opposing 
processes is crucial for developing effective treatments and 

improving surgical outcomes across various medical fields.
Magnesium (Mg) alloys are emerging as promising alter-

natives to permanent metallic implants in orthopedic applica-
tions. Traditional implants—such as titanium, cobalt-chromi-
um alloys, and stainless steel—can cause stress shielding 
and often require removal surgeries.5,6 In contrast, Mg alloys 
offer biodegradability, biocompatibility, and mechanical prop-
erties that closely match those of human bone.7 During degra-
dation, these alloys promote osteogenesis and angiogenesis, 
thereby enhancing fracture healing.5 However, challenges 
such as rapid degradation and hydrogen gas release remain 
obstacles to clinical application.6 Ongoing research focuses 
on improving the corrosion resistance of Mg alloys through 
alloy development, surface treatments, and implant design 
modifications.8 Despite current limitations, Mg alloys have the 
potential to reduce long-term complications associated with 
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permanent implants and eliminate the need for removal pro-
cedures—making them an attractive option for temporary or-
thopedic use.7,8 A summary comparison of implant materials 
discussed in this section is provided in Table 1.9–28

Muscle degeneration is a significant concern in orthope-
dic surgeries, especially those involving implants. In rotator 
cuff tears, muscle atrophy and fatty infiltration are independ-
ent predictors of poor surgical outcomes.1 Similarly, breast 
implants may lead to sarcopenia and fat degeneration of 
the pectoralis major muscle, likely due to the weight of the 
implant and mechanical pressure on muscle fibers.29,30 
These mechanical changes can disrupt mechanobiological 
signaling at the cellular level, affecting muscle architecture, 
structure, and composition. The clinical implications of mus-
cle degeneration are substantial, influencing both surgical 
decision-making and rehabilitation strategies. Treatments 
that benefit atrophic muscle may be harmful to degenerat-
ing muscle, and vice versa.31 A deeper understanding of the 
molecular pathways and mechanical forces involved in mus-
cle degeneration is crucial for developing targeted therapies 
and optimizing surgical outcomes, particularly in procedures 
involving implants or muscle repair.

Implant materials can induce a variety of responses in 
muscle tissue, including inflammation, fibrosis, and mechan-
ical stress. The interaction between an implant and the host 
tissue is critical for successful integration and may trigger 
foreign body reactions and immune responses.32 Chronic 
local inflammation, combined with mechanical factors such 
as micromotion and stress, significantly influences the long-
term behavior of implants.33 Implant-induced changes in 
intermuscular connectivity can alter force transmission be-
tween muscles, potentially impairing skeletal muscle func-
tion.34 Additionally, the formation of connective tissue around 
implants can increase tissue stiffness and alter the configu-
ration of muscle linkages, potentially doubling or quadru-
pling mechanical interactions within weeks.34 Understanding 
these complex interactions is crucial for designing new gen-
erations of implants that improve biocompatibility and modu-
late specific tissue responses for repair and regeneration.35

Implant materials also affect surrounding tissues by in-
fluencing immune responses, fibrosis, and vascularization. 
Non-degradable metals like titanium and cobalt-chromium 
alloys typically cause fibrotic encapsulation.5 In contrast, bio-
degradable Mg alloys provide distinct advantages. Although 
Mg degradation may initially increase inflammation, it subse-
quently promotes immunomodulation and angiogenesis.36 Mg 

ions released during degradation stimulate both osteogenesis 
and angiogenesis, making these alloys particularly well-suited 
for orthopedic applications.5 Muscle tissue can also adapt to 
the mechanical changes imposed by implants, potentially af-
fecting protein synthesis and cytoskeletal structure.37 Under-
standing these complex biological responses at the cellular 
and molecular levels is crucial for predicting long-term out-
comes and improving the safety of Mg-based implants.38

Mg alloys have thus gained recognition as promising bio-
degradable implant materials for orthopedic use, owing to 
their favorable biocompatibility and bone-like mechanical 
properties.39 These alloys offer significant advantages over 
permanent implants, such as eliminating removal surgeries 
and reducing long-term complications.8 However, their rapid 
corrosion in physiological conditions has hindered broader 
clinical adoption.40 To address this, researchers are explor-
ing the use of alloying elements—such as Al, Mn, Ca, Zn, and 
rare earth elements—to enhance corrosion resistance.40,41 
Surface modifications, including polymeric coatings like sol-
gel films and synthetic aliphatic polyesters, have also shown 
promise in improving both corrosion resistance and biocom-
patibility.40 An ideal biodegradable implant should maintain 
a balance between gradual material loss and the increasing 
mechanical strength of newly forming bone tissue.39 Contin-
ued research focuses on optimizing alloy composition and 
surface engineering to control degradation kinetics and en-
hance overall implant performance.8

The literature reveals a complex interplay between im-
plant materials and surrounding tissues, including skeletal 
muscle. While bone substitute materials can influence mus-
cle function and adaptation,37 the effects of implants on mus-
cle degeneration remain underexplored. Recent advances in 
biomaterials for treating volumetric muscle loss are promis-
ing, with acellular implants guiding cell fate and tissue or-
ganization.42 However, the biodegradation of implant materi-
als in the biological environment remains a major concern.43 
Various materials—including metals, ceramics, and poly-
mers—can deteriorate in the body, potentially compromis-
ing their mechanical, physical, and chemical properties.44 
This degradation process, broadly referred to as corrosion, 
affects all types of implant materials and can have clinical 
significance even in cases of seemingly minor reactions. 
Further research is necessary to understand the long-term 
impact of implant materials on muscle tissue and to develop 
more biocompatible and stable solutions.

This review explores the potential of magnesium-based 

Table 1.  Basic comparison of implant materials in the literature

Implant material Advantages Disadvantages
Ti alloys High biocompatibility, mechanical 

stability, and low corrosion9,10
Permanent (irreversible), risk of inflammation11,12

Co-Cr alloys High wear resistance, long service life13,14 Risk of tissue damage due to high hardness,  
limited biocompatibility15,16

Stainless steel Economical, mechanically strong17,18 High corrosion rate, risk of inflammation19,20

Polymer-based 
implants

Flexible, biodegradable options available21,22 Low mechanical strength, limited long-term  
reliability23,24

Mg alloys Biodegradable, promotes tissue healing25,26 Controlled degradation is difficult, and 
mechanical strength is low27,28

Co-Cr, cobalt-chromium; Mg, magnesium; Ti, titanium.
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biomaterials for orthopedic implants, highlighting their ad-
vantages over traditional metallic implants such as titanium, 
cobalt-chromium, and stainless steel. Magnesium alloys offer 
biodegradability—eliminating the need for implant removal sur-
geries—and possess mechanical properties similar to bone, 
thereby reducing stress shielding.45 They also demonstrate 
osteoconductivity and antibacterial properties.46 However, rap-
id biodegradation and insufficient mechanical strength remain 
significant challenges.47 To address these issues, researchers 
have investigated alloying with elements like aluminum and 
zinc, reinforcing with ceramics, and applying surface coat-
ings.48 The development of Mg-based bulk metallic glasses 
has also shown promise in improving corrosion resistance.45 
Ongoing research focuses on optimizing the balance between 
degradation rate and mechanical integrity to match bone heal-
ing, potentially revolutionizing orthopedic implant materials.46

This review examines the effects of implant materials on 
muscle tissue and evaluates their associated risks and ben-
efits. Bone substitute materials can influence muscle func-
tion by altering fiber type distribution, myosin heavy chain 
composition, and vascularization.37 In treating volumetric 
muscle loss, implantable biomaterials with defined structural 
and biochemical properties can guide cell behavior and tis-
sue formation.42 Non-invasive imaging modalities are cru-
cial for assessing the functional performance of myogenic 
biomaterials and engineered muscle tissues.49 The foreign 
body reaction remains a significant concern in biomedical 
implantation and is influenced by the implant material’s phys-
iochemical properties, which create a protein “fingerprint”.50 
A deeper understanding of these interactions is essential for 
developing implant materials with improved biocompatibil-
ity and reduced foreign body reaction, ultimately enhancing 
outcomes in muscle tissue engineering and regeneration.

Mechanisms of muscle degeneration
Post-implant inflammation and cellular damage
Post-implant inflammation in muscle tissue involves a com-

plex cascade of biological events. Following implantation, 
proteins adsorb to the biomaterial surface, attracting neu-
trophils and macrophages.51 This inflammatory response is 
characterized by rapid immune cell recruitment and cytokine 
release.52 Neutrophil infiltration occurs early, followed by mac-
rophage accumulation.53 These immune cells recognize dam-
age-associated molecular patterns and produce inflammatory 
cytokines, which may stimulate muscle repair but can also 
lead to cytokine storms and further tissue damage.54 The im-
plantation process also triggers angiogenesis, with increased 
hemoglobin content and vessel formation in the affected 
muscle.53 Macrophages may fuse to form foreign body giant 
cells, contributing to implant degradation and fibrotic encap-
sulation.51 Understanding these inflammatory mechanisms is 
crucial for developing strategies that mitigate cellular damage 
and promote tissue repair in implant-related muscle injuries.

Mg-based implants and their degradation products play 
a complex role in modulating inflammation. Initially, Mg deg-
radation exacerbates inflammation, but it subsequently pro-
motes immunomodulatory and proangiogenic effects while 
reducing peri-implant fibrosis.36 Mg ions (Mg2+) can convert 
macrophages from M0 to M2 phenotype, suppressing pro-
inflammatory cytokines and upregulating anti-inflammatory 
markers.55 This anti-inflammatory effect is dose-dependent 
and associated with reduced nuclear factor kappa-light-chain-
enhancer of activated B cells activation. Silver-containing Mg 
alloys have shown additional potential as anti-inflammatory 
implant materials, reducing the need for long-term anti-inflam-
matory medications.56 However, Mg deficiency can sensitize 
cells to inflammatory stimuli and contribute to vascular and 
cellular events during acute inflammation.57 These findings 
highlight the dual nature of Mg in inflammation, as illustrated 
in Figure 1 (CC-BY 4.0),58 underscoring its potential as an 
anti-inflammatory agent in clinical applications.

Fibrosis and muscle atrophy
Muscle degeneration following implantation involves com-
plex processes of fibrosis and atrophy. Fibrosis is charac-
terized by increased collagen deposition and extracellular 

Fig. 1. Mg deficiency induces inflammation through several signaling pathways.58 Mg, magnesium.
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matrix remodeling, often triggered by transforming growth 
factor-beta activation.53,59 This process is accompanied by 
the recruitment of inflammatory cells, particularly neutrophils 
and macrophages, as well as the production of pro-inflam-
matory cytokines such as tumor necrosis factor-alpha and 
C-C motif chemokine ligand 2 / monocyte chemoattractant 
protein-1.53 Muscle atrophy occurs through the activation of 
proteasomal and lysosomal pathways, leading to the break-
down of contractile proteins.59 The fibrotic environment pos-
es challenges for drug delivery due to increased tissue stiff-
ness, density, and altered pH.60 While inflammation plays a 
crucial role in muscle repair, chronic inflammation can result 
in persistent atrophy and fibrosis, ultimately impairing mus-
cle function.61 Understanding these mechanisms is essen-
tial for developing effective therapeutic strategies to combat 
muscle degeneration.

Mg alloys show promise as biodegradable implants due to 
their biocompatibility and mechanical properties.62 However, 
their rapid degradation can limit their clinical application. 
Controlling the degradation rate is crucial for maintaining im-
plant integrity during tissue healing.63 Although Mg degrada-
tion initially exacerbates inflammation, it subsequently pro-
motes immunomodulation and angiogenesis.36 Additionally, 
Mg implants tend to produce thinner fibrous encapsulation 
compared to titanium, potentially reducing fibrosis. Various 
strategies—such as alloying, surface treatments, and struc-
tural design—can be employed to control Mg degradation. 
For instance, strontium phosphate coatings can protect Mg 
from early degradation while preserving biocompatibility.25 
Understanding the relationship between Mg properties and 
cellular processes is key to designing optimized implants.36 
Controlled Mg degradation can provide mechanical support 
during the early stages of healing while allowing for natural 
resorption later, eliminating the need for surgical removal.25

Limitations of muscle regeneration
Muscle regeneration is limited by several factors, includ-
ing mitochondrial dysfunction, cellular senescence, and 
age-related changes in the immune system. Mitochondrial 
health is essential for muscle stem cell function and energy 
production during repair.64 Senescent cells within the mus-
cle niche contribute to a pro-inflammatory environment that 
impairs regeneration, whereas their removal can accelerate 
the healing process.65 Aging of the immune system also re-
duces regenerative capacity, as age-related changes in im-
mune cell populations negatively impact muscle stem cell 
function and disrupt the inflammatory response to injury.66 
Current clinical treatments for severe muscle injuries, such 
as volumetric muscle loss, are limited, prompting ongoing 
research into tissue engineering approaches that combine 
cell therapy, scaffold design, and bioactive factor delivery.67 
Addressing these limitations could improve muscle regen-
eration techniques and enhance outcomes for patients with 
traumatic or age-related muscle loss.

Mg ions (Mg2+) also play an important role in muscle re-
generation and peripheral nerve repair. Mg2+ supplementa-
tion enhances mTOR signaling, promoting myogenic differ-
entiation and protein synthesis, both of which are beneficial 
for counteracting age-related muscle decline.68 Nanosized 
silk-Mg complexes have shown promise in tissue regenera-
tion, demonstrating angiogenic and anti-inflammatory prop-
erties.69 However, non-physiological Mg concentrations may 

induce oxidative stress in myoblasts, inhibiting membrane 
fusion and impairing myogenesis.70 In peripheral nerve re-
generation, Mg-based biomaterials are considered promis-
ing due to their biocompatibility and biodegradability.33,71 
While Mg supplementation offers potential benefits for both 
muscle and nerve regeneration, maintaining appropriate Mg 
homeostasis is essential for optimal therapeutic outcomes. 
These findings suggest that Mg could be a valuable compo-
nent of regenerative medicine strategies for treating muscle 
dysfunction, though further research is needed to fully eluci-
date its mechanisms and clinical applications.

Interaction of light alloys with muscle tissue
Biological and mechanical properties of Mg
Mg alloys have attracted significant attention as biodegrad-
able biomaterials for orthopedic applications due to their 
biocompatibility, favorable mechanical properties, and bio-
degradability.5,72–74 These alloys offer advantages over tra-
ditional metal implants, including the elimination of second-
ary surgeries and reduced stress-shielding effects.5,74 Mg 
ions released during degradation promote osteogenesis and 
angiogenesis, thereby enhancing bone healing.5 However, 
the rapid corrosion rate of pure Mg in physiological environ-
ments presents challenges.74 To address this, various strate-
gies such as alloying, thermal processing, and surface modi-
fication have been explored.73,74 These approaches aim 
to improve mechanical strength, corrosion resistance, and 
biocompatibility.72,73 Ongoing research seeks to optimize Mg 
alloys so that their degradation rate matches the timeline of 
bone tissue healing, positioning them as promising candi-
dates for future orthopedic implants.74

Recent studies have also investigated the interactions of 
Mg implants with soft tissues and cells. For example, Mg ion 
implantation on titanium surfaces enhances the adhesion 
and migration of human gingival fibroblasts via activation 
of the mitogen-activated protein kinase pathway.75 In bone 
regeneration, moderate concentrations of Mg2+ (∼4.11 mM) 
promote osteogenic differentiation and intramembranous os-
sification.76 While Mg implant degradation in soft tissue ini-
tially intensifies inflammation, it later provides immunomodu-
latory and pro-angiogenic effects, resulting in thinner fibrous 
encapsulation compared to titanium implants.36 Additionally, 
surface roughness gradients on Mg implants reveal differ-
ential responses from endothelial and smooth muscle cells, 
where topographical cues can override the biochemical influ-
ence of released Mg2+ ions.77 These findings underscore the 
complex interactions between Mg implants and surrounding 
tissues, providing insights for optimizing implant design and 
improving biocompatibility in diverse medical applications.

Corrosion of Mg and muscle degeneration
Mg alloys are promising materials for biomedical applica-
tions, particularly as orthopedic implants, due to their bio-
compatibility and mechanical performance.78 However, their 
high degradation rate in physiological environments remains 
a major challenge.78,79 The corrosion of Mg alloys typically 
occurs in multiple stages, including rapid initial corrosion, a 
steady state phase, and accelerated corrosion.79 This pro-
gressive degradation can result in the loss of mechanical 
strength and ductility over time.80 To mitigate these issues, 
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researchers are developing strategies such as alloying and 
surface modification.78 Bioinspired surface designs have 
emerged as a promising means of controlling corrosion be-
havior while enhancing implant functionality.81 Computation-
al modeling and experimental studies are also being used to 
predict and understand corrosion behavior in physiological 
conditions.80

Surface modifications of Mg-based implants are essential 
for addressing corrosion-related complications and improv-
ing biocompatibility. A variety of approaches—including bulk 
and surface modifications—have been explored to reduce 
corrosion rates and enhance mechanical integrity.82 These 
efforts aim to limit excessive inflammatory responses and 
prevent implant-associated infections, both of which are 
common complications in orthopedic procedures.83 Func-
tional coatings, including metal oxides, polymers, and com-
posite materials, have shown potential in regulating degrada-
tion and improving biological performance in cardiovascular 
stents.84 However, the complex interplay between Mg cor-
rosion and biological responses—such as the generation of 
reactive intermediates and redox interactions with cells and 
biomolecules—requires a comprehensive understanding of 
metal–cell interactions.85 Advances in surface modification 
may help reduce inflammation and fibrosis in muscle tissue, 
although further studies are needed to fully elucidate their 
effects.

Comparison of Mg alloys with other materials
Mg alloys have gained widespread interest in various fields 
due to their unique material properties. These lightweight 
metals offer high strength, effective shock absorption, and 
good corrosion resistance.86 In biomedical contexts, Mg al-
loys are biodegradable and support bone tissue regenera-
tion, with a Young’s modulus that more closely matches nat-
ural bone compared to other metallic implants.74 However, 
their rapid corrosion in physiological environments presents 
significant challenges, necessitating improvements through 
alloying, machining, and coating techniques.74,87 Beyond 
biomedicine, Mg alloys also show promise in electromag-
netic shielding applications. Their shielding performance 
is influenced by grain size, texture, alloying elements, and 
secondary phases.88 Recent developments have led to the 
creation of high-performance Mg alloys for shielding appli-
cations, such as Mg–Zn–Y–Ce–Zr and Mg–Sn–Zn–Ca–Ce 
systems.88 These advancements highlight the versatility and 
potential of Mg alloys in various engineering applications.

As biomedical materials, Mg alloys are particularly prom-
ising due to their biocompatibility, biodegradability, and me-
chanical properties that resemble those of bone.62,89 Their 
biodegradability eliminates the need for implant removal 
surgery, and the released Mg ions stimulate bone forma-
tion while providing antimicrobial effects.45,74 Nonetheless, 
their rapid corrosion in physiological environments poses 
obstacles to maintaining structural integrity during tissue 
repair.62,74 To overcome this, researchers are developing 
methods to control the degradation rate, including alloy de-
sign, microstructural modifications, surface treatments, and 
the use of Mg-based bulk metallic glasses.45,62,89 These 
approaches aim to balance degradation and bone healing 
rates, while addressing limitations associated with conven-
tional metallic implants such as stress shielding and toxic 
ion release.45,74

Clinical and experimental findings
Clinical findings
Clinical studies on Mg-based implants for orthopedic appli-
cations have shown promising results, with excellent patient 
outcomes and no need for implant removal.90,91 These im-
plants offer advantages such as biodegradability, reduced 
stress shielding, and enhanced bone strengthening.92 Mg 
implants promote bone formation, angiogenesis, and exert 
immunomodulatory effects within the bone microenviron-
ment.91 However, challenges remain, including high corro-
sion rates, unpredictable degradation, and potential struc-
tural failure.92 In vivo studies have generally found that Mg 
implants cause only mild to moderate inflammatory reac-
tions, though the timeline of foreign body giant cell forma-
tion varies across studies. Further research is needed to 
better understand immunological responses to Mg implants 
and how implant characteristics, such as size, shape, and 
alloy composition, affect degradation kinetics and host re-
sponses.93

Skeletal muscle regeneration is a complex process in-
volving multiple cell types and signaling pathways.94 Mus-
cle satellite cells play a crucial role in muscle repair and 
regeneration.95 However, aging and pathological conditions 
can impair the function of muscle satellite cells, reducing re-
generative capacity.95,96 In cases of volumetric muscle loss, 
persistent infiltration of neutrophils and natural killer cells 
can hinder muscle stem cell-mediated repair. Additionally, 
cellular senescence—a state of irreversible cell cycle ar-
rest—accumulates in aging tissues and contributes to mus-
cle degeneration.97 To address these challenges, various 
strategies for skeletal muscle tissue engineering have been 
developed, including the use of stem cells, biomaterials, and 
biomolecules.94 Understanding the mechanisms of muscle 
regeneration and the aging of stem cells is essential for de-
veloping effective therapies.

Recent clinical studies further highlight the potential of 
Mg-based implants in orthopedic applications due to their bi-
odegradability and capacity to enhance tissue regeneration. 
Trials have reported encouraging results for Mg implants in 
bone fracture fixation, eliminating the need for removal sur-
gery.90 These implants promote bone formation, angiogene-
sis, and exert immunomodulatory effects within the bone mi-
croenvironment.91 However, variability in degradation rates 
and potential hydrogen gas formation remain concerns.92 
Strategies such as alloying and surface coating have been 
explored to regulate degradation and improve biocompatibil-
ity.25,98,99 While Mg implants offer advantages like reduced 
stress shielding and improved bone integration, issues such 
as unexpected degradation and mechanical failure still pose 
challenges. Ongoing research focuses on optimizing Mg 
compositions and surface modifications to overcome these 
limitations and broaden clinical applications.91,92 A summary 
of this section is provided in Table 2.9,12–14,22,100

Experimental studies
Mg-based implants demonstrate significant potential for bio-
medical applications, particularly in fracture treatment, due to 
their biodegradability and bone-healing capabilities.101 How-
ever, their high corrosion rate presents challenges such as 
unpredictable degradation and potential cytotoxicity.92,102–104 
Animal models—including rats, rabbits, and pigs—have been 
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widely used to evaluate the in vivo performance of Mg-based 
materials.92,101 At the cellular level, Mg implants influence 
gene and protein expression, cell adhesion, and immune re-
sponses.38 Mg deficiency can lead to inflammation, character-
ized by elevated cytokine production and oxidative stress.105 
While in vitro studies have extensively assessed the biocom-
patibility of Mg-based materials, further in vivo research is es-
sential to fully understand their biological effects and optimize 
their clinical applications.92,101

Recent studies have investigated various surface modi-
fication techniques aimed at improving the performance of 
Mg implants in biomedical settings. Sandblasting has been 
shown to significantly alter surface roughness, hardness, 
and corrosion behavior, with pressure being a critical vari-
able in these outcomes.106 Polymer coatings applied to plas-
ma electrolytic oxidation surfaces have been investigated to 
enhance both biocompatibility and corrosion resistance.107 
Laser surface modification techniques—including laser melt-
ing, alloying, cladding, texturing, and shock peening—have 
also demonstrated potential in improving surface character-
istics such as corrosion resistance and cellular response.108 
These modifications aim to address the primary limitation 
of Mg implants: their rapid corrosion in physiological envi-
ronments. Both bulk and surface modifications have been 
studied to improve corrosion and corrosion-fatigue resist-
ance, ultimately preserving mechanical integrity during tis-
sue healing.82

Magnesium-based implants continue to show promise in 
various biomedical applications due to their biodegradability 
and ability to support bone regeneration and vascular remod-
eling.92,109 Animal studies involving rats, rabbits, dogs, and 
pigs have been conducted to assess the biocompatibility, 
degradation behavior, and osteogenic potential of these ma-
terials.99,101,109 Results indicate good in vivo biocompatibility 
and osteogenic activity, with no adverse tissue reactions ob-
served near the implants.109 Nonetheless, challenges such 
as rapid degradation in biological fluids remain, which can 
compromise mechanical integrity before complete healing is 
achieved.110 To mitigate these issues, researchers have pur-
sued approaches including alloying, surface modification, 
and coating techniques to enhance corrosion resistance and 
better control degradation rates.109,110 Despite the promising 
data, standardization of animal models and study designs is 
necessary to facilitate clinical translation.101

Discussion and future perspectives
Role of Mg implants in muscle degeneration
Mg-based implants have attracted significant attention in 
orthopedics due to their biocompatibility, biodegradability, 

and mechanical properties that closely resemble those of 
natural bone.72,100 These implants offer several advantages 
over permanent metallic implants, such as eliminating the 
need for secondary surgeries.72 However, the rapid corro-
sion of Mg alloys in physiological environments presents a 
challenge, potentially leading to early fractures and surgical 
failures.111 To address this issue, various strategies have 
been explored, including composite preparation, surface 
modification, and polymer coatings.72,111 These approaches 
aim to retard degradation and enhance bioactivity. Despite 
considerable progress in alloy development and fabrication 
techniques, a significant limitation remains: the mismatch 
between bone healing rates and alloy degradation. This is-
sue hinders the widespread clinical application of Mg-based 
implants.112 Ongoing research focuses on optimizing degra-
dation behavior, enhancing mechanical properties, and im-
proving biocompatibility to facilitate the clinical transition of 
Mg-based implants in orthopedics.100,112

Mg alloys are emerging as promising biodegradable bio-
materials for bone implants, offering an alternative to tradi-
tional materials such as stainless steel, cobalt-chromium, 
and titanium alloys.113,114 These conventional materials often 
lead to stress shielding and ion release and require second-
ary surgeries for removal.45 Mg alloys, by contrast, are bio-
compatible, possess mechanical properties similar to bone, 
and biodegrade over time, eliminating the need for implant 
removal.45,115 However, the rapid corrosion of Mg alloys in 
body fluids presents a significant challenge, potentially com-
promising the integrity of the implants.114,115 Researchers 
are exploring strategies to control Mg degradation, such as 
incorporating alloying elements, surface treatments, and de-
veloping Mg-based bulk metallic glasses.45,113 These efforts 
aim to optimize corrosion resistance while maintaining the 
beneficial properties of Mg alloys for bone tissue regenera-
tion. The properties of other biomaterials in comparison to 
Mg alloys are summarized in Table 3. Although Mg alloys 
hold great promise due to their bioresorbability, further opti-
mization is required to improve their mechanical properties 
and control their degradation rate.

Gaps in the literature
Mg implants have shown considerable potential in orthope-
dic applications due to their degradability and their ability 
to promote bone regeneration. These implants have been 
shown to enhance angiogenesis, modulate immune re-
sponses, and reduce peri-implant fibrosis in soft tissue.36 Mg 
ions play a crucial role in regulating bone metabolism by pro-
moting osteogenesis and inhibiting osteoclast activity.116 In 
fracture treatment, Mg-based implants have demonstrated 
the ability to promote healing, though standardized preclini-
cal models are still lacking.101 Notably, biodegradable Mg im-

Table 2.  Biomaterial properties with clinical findings

Implant type Clinical findings Long-term impacts
Ti alloys9,12 High biocompatibility, stability Chronic inflammation, risk of fibrosis
Co-Cr alloys13,14 Abrasion resistant, long life Tissue hardening, biocompatibility problems
Mg alloys22,100 Biodegradable, reduces inflammation Controlled degradation is difficult, 

and mechanical strength is low

Co-Cr, cobalt-chromium; Mg, magnesium; Ti, titanium.
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plants have shown potential in alleviating medication-related 
osteonecrosis of the jaw by enhancing angiogenesis through 
the upregulation of vascular endothelial growth factor and 
calcitonin gene-related peptide mediated pathways.117 While 
these findings highlight the promising applications of Mg im-
plants, further research is necessary to fully understand their 
long-term effects and optimize their clinical use.

Mg alloys also exhibit promising immunomodulatory ef-
fects in tissue regeneration. Initially, the degradation of Mg 
implants may exacerbate inflammation,36 but over time, they 
promote a shift from pro-inflammatory M1 macrophages to 
anti-inflammatory M2 macrophages.118,119 This transition 
is crucial for reducing chronic inflammation and enhanc-
ing tissue healing. Mg ions have been found to decrease 
the expression of pro-inflammatory markers, even in mildly 
inflammatory environments.119 In vivo studies indicate that 
Mg alloys can stimulate macrophage polarization, increase 
vascularization, and reduce fibrous tissue formation when 
compared to titanium implants.36,120 However, the osteo-
genic effects of Mg alloys remain unclear, with some stud-
ies showing enhanced osteoblast maturation while others 
report decreased osteoblast activity.118,120 These conflicting 
findings highlight the potential of Mg alloys to create a fa-
vorable environment for tissue regeneration through immu-
nomodulation.

The biomechanical interactions between implants and 
surrounding tissues are crucial for implant stability and suc-
cess.121 Understanding tissue biomechanics is essential for 
developing realistic models and improving implant perfor-
mance, as highlighted in studies on penile prostheses.122 
Advanced bioprinting techniques, such as assembled cell-
decorated collagen, are being explored to create implants 
with properties similar to native musculoskeletal tissue, 
promoting functional recovery in cases of volumetric mus-
cle loss.123 The graft-tissue interface plays a critical role in 
implant success, and a better understanding of these inter-
actions could lead to improved graft designs with enhanced 
biocompatibility.35 However, further investigation is needed 
into the biomechanical properties of specific tissues, such 
as the corpora cavernosa and corpus spongiosum, to de-
velop more accurate computational models and preclinical 
testbeds for implant testing.122

Surface modifications for Mg implants
Recent research has focused on controlling the corrosion 
rate of Mg alloys through surface modifications and coatings. 
Various approaches have been explored, including conver-
sion and deposition coatings, mechanical treatments, and 
novel alloy designs.25,124 Surface coatings, particularly those 
using natural biopolymers, have shown promise in improving 
corrosion resistance, cell adhesion, and biodegradability.125 
Protective and functional osseoconductive coatings have 
been developed to enhance biostability and stimulate tissue 
ingrowth.126 Researchers have also investigated the effects 
of porous structures, phase structures, and grain sizes on 
the degradation behavior of Mg alloys.25 Despite progress, 
challenges remain in achieving optimal corrosion control for 
Mg alloys. Future studies should focus on hybrid treatments 
that combine innovative biomimetic coatings with mechani-
cal processing, along with rigorous testing and characteriza-
tion to assess their efficacy.124

Mg alloys hold promise as biodegradable implants but 
face challenges due to their rapid corrosion in physiological 
environments.40,127 To address this, various surface modifi-
cation techniques have been investigated. Plasma electrolyt-
ic oxidation combined with hydroxyapatite particles creates a 
ceramic-like coating that enhances corrosion resistance and 
bioactivity.128 Polymer coatings, including sol-gel, synthetic 
aliphatic polyesters, and natural polymers, have also been 
explored to improve corrosion resistance and biocompat-
ibility.40 Bioabsorbable polymers are particularly promising 
due to their biocompatibility and potential for drug encapsu-
lation.129 Multilayer hybrid coatings that combine chemical 
pretreatment, inorganic hydroxyapatite coating, and protein-
based polymer coatings may offer a promising approach to 
optimize corrosion resistance and biocompatibility.127 These 
surface modification strategies aim to control degradation 
rates while preserving the beneficial properties of Mg alloys 
for orthopedic applications. A comparison of the effects of 
these modification types can be found in Table 4 and Figure 
2 (CC-BY 4.0).130–136 Future studies should focus on devel-
oping hybrid coatings that combine mechanical reinforce-
ment with bioactive properties, ensuring both stability and 
controlled bio-resorption.

Table 3.  General bio-comparison of Mg alloys with other biomaterials

Property Ti alloys Co-Cr alloys Stainless steel Mg alloys
Biodegradation None None None High
Inflammation risk Middle High High Low
Mechanical stability High High High Middle
Fibrosis development Diffuse Diffuse Diffuse Less
Immunomodulation None None None High

Co-Cr, cobalt-chromium; Mg, magnesium; Ti, titanium.

Table 4.  Comparison of the effects of different modification types

Coating method Advantages Disadvantages
Plasma electrolytic oxidation131,132 High corrosion resistance, biocompatible Coating homogeneity difficult
Hydroxyapatite coating133,134 Increases bone bonding High cost
Biopolymer coatings135,136 Provides controlled degradation, adds flexibility Long-term stability unknown



Nat Cell Sci 2025;3(2):100–111 
https://doi.org/10.61474/ncs.2025.00002

Nature Cell and Science | www.cellnatsci.com 107

Conclusions
The choice of implant materials significantly affects post-
implant muscle degeneration, influencing inflammation, fi-
brosis, and tissue regeneration. Traditional materials such 
as titanium, cobalt-chromium, and stainless steel offer me-
chanical stability but often induce chronic inflammation and 
fibrosis. In contrast, Mg alloys demonstrate significant poten-
tial in promoting muscle healing due to their bioresorbability 
and immunomodulatory properties. Degradation products of 
Mg reduce inflammation, enhance angiogenesis, and sup-
port tissue regeneration—benefits that are largely absent in 
conventional metallic implants.

Nevertheless, the uncontrolled degradation of Mg remains 
a major challenge, as it can compromise the mechanical 
integrity of the implant. Advances in alloy composition and 
surface modification techniques are crucial for optimizing the 
performance of Mg implants. Future research should focus 
on balancing Mg’s bioactivity and its controlled resorption 
rates, ensuring it becomes a reliable alternative to perma-
nent metallic implants. If these challenges are successfully 
addressed, Mg alloys could offer a next-generation solution 
that bridges the gap between mechanical stability and bio-
logical functionality in orthopedic applications.
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