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Introduction
Myopia, commonly referred to as nearsightedness, represents 
a significant refractive error of the eye, in which distant objects 
appear blurred while near objects remain clear.1 This condi-
tion primarily develops during childhood and early adulthood 
and results from excessive elongation of the eyeball, causing 
images to focus in front of the retina rather than directly on 
it.2 Although this optical aberration may seem straightforward, 
myopia is a complex trait influenced by genetic predisposition, 
environmental factors, and individual behaviors, all of which 
contribute to its onset and progression.3

In recent years, myopia has emerged as a global public 
health concern, with its prevalence rising alarmingly across 
different regions, particularly in East and Southeast Asia, 
where studies report rates as high as 80–90% among young 
adults.4 Such statistics indicate that by 2050, nearly half of 
the world’s population could be affected by myopia.5 This 
soaring prevalence poses substantial public health chal-
lenges due to the increased risk of severe ocular conditions, 
such as myopic macular degeneration, retinal detachment, 
cataracts, and glaucoma—leading causes of vision impair-
ment and potential blindness.6,7

The rapid increase in myopia prevalence has prompted 

further investigation into its underlying causes and potential 
interventions. Compelling evidence from numerous studies 
underscores the role of both genetic and environmental fac-
tors in the development and progression of myopia.8 While 
genetic factors confer susceptibility, contemporary lifestyle 
elements, including extensive educational demands and 
other near-work activities, are also suspected to be critical 
contributors.9

Myopia is typically defined by a spherical equivalent (SE) 
refractive error of ≤−0.5 diopters (D), with any degree of my-
opia increasing the risk of adverse ocular tissue changes.10 
The risk rises substantially at higher levels of myopia (high 
myopia, SE worse than −5.0 D or −6.0 D) and in pathologi-
cal myopia, which involves secondary retinal changes that 
can lead to irreversible visual impairment or blindness.11,12 
Consequently, the widespread need for optical correction, 
coupled with the ocular health risks associated with myopia, 
underscores the urgency of implementing both primary and 
secondary preventive measures.2,13–15 These measures aim 
to delay the onset of myopia in children and slow its progres-
sion in later childhood.

Modern myopia control strategies span a range of ap-
proaches, including progressive addition lenses, topical 
atropine, orthokeratology lenses, and multifocal contact 
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lenses, each offering potential benefits for preserving ocular 
health.16–20 Staying informed on the latest findings regarding 
myopia’s etiology and treatment strategies enables stake-
holders to actively contribute to safeguarding visual health 
and improving the quality of life for those affected by this per-
vasive condition.

Myopia can be classified into two types based on its un-
derlying mechanism: axial myopia and refractive myopia.21 
The more common form, axial myopia, results from elonga-
tion of the eye’s axial length, preventing incoming light from 
focusing directly on the retina. In contrast, refractive myopia 
is characterized by an increased refractive power of the eye’s 
optical components without significant axial elongation.22 
This form of myopia is primarily attributed to alterations in 
the refractive index or curvature of the cornea or lens. Indi-
viduals with refractive myopia experience a focusing issue 
in which light converges at a point anterior to the retina, re-
sulting in blurred vision for distant objects. Such refractive 
anomalies may arise due to developmental factors, genetic 
predisposition, or secondary conditions affecting the lens, 
such as nuclear sclerosis or other lenticular changes.23 This 
review primarily focuses on the more common axial myopia.

This review aimed to provide an in-depth examination of 
the latest developments in the epidemiology, pathogenesis, 
diagnosis, and treatment of myopia. It is intended to offer 
general practitioners, pediatricians, and ophthalmologists 
a comprehensive and up-to-date framework for diagnosing 
and managing myopia.

Epidemiology of myopia
Myopia has emerged as the most prevalent ocular disor-
der worldwide, posing significant public health challenges. 
Epidemiological data illustrate that myopia affects approxi-
mately 28.3% of the global population, translating to nearly 

two billion individuals.24 Alarmingly, projections suggest a 
surge to nearly 4.8 billion individuals, or 49.8% of the global 
population, by 2050.5 This rising trend is accompanied by 
an increase in high myopia cases, from 4.0% to 9.8% of the 
global population within the same timeframe.25

Global prevalence trends
As shown in Figure 1, the prevalence of myopia exhibits con-
siderable geographical variability. In urbanized regions of East 
and Southeast Asia, such as Singapore, Japan, South Korea, 
and China, myopia prevalence is notably high. Conversely, 
regions such as Central Africa and rural areas in Nepal, South 
America, and parts of India maintain substantially lower prev-
alence rates. Western countries, including the United States 
and several European nations, have also experienced a no-
table rise in myopia prevalence over recent decades, likely 
influenced by lifestyle changes and urbanization.26,27

Asia

China
In China, the prevalence of myopia among adolescents has 
been widely studied across various regions, with significant 
findings elucidating contributing factors. In Chongqing, a 
cross-sectional study of schoolchildren revealed an alarm-
ingly high myopia prevalence, recorded at 73.1% among 
elementary school students and 81.8% among junior mid-
dle school graduates. The study implicated academic pres-
sures, insufficient outdoor activity, and poor eye care habits 
as significant contributors to the myopia epidemic.28 Simi-
larly, in Hangzhou, the overall prevalence of myopia among 
children and adolescents was reported as 55.3%, with rates 
escalating to 85.0% among senior high school students.29 
Factors such as prolonged exposure to electronic screens, 
inappropriate lighting, and incorrect reading postures were 
identified as influential in the development of myopia.

Fig. 1. Prevalence of myopia in children and adolescents. Substantial prevalence rates of myopia have been identified in Japan, South 
Korea, and China. In contrast, the prevalence of high myopia among children and adolescents in Norway, Italy, and the United States is notably 
lower.
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In Nantong, a cross-sectional survey of adolescents aged 
12–19 found a myopia prevalence intrinsically linked to un-
corrected refractive errors. The study reported a total uncor-
rected refractive error prevalence of 23.7%, with myopia 
being a major risk factor.30 Notably, lifestyle habits such as 
increased daily use of electronic devices exacerbated these 
conditions. In the Ningxia Hui Autonomous Region, the 
prevalence of myopia among students was documented at 
27.3%, with lifestyle behaviors and physical activity strongly 
associated with vision health.31 A unique study assessed the 
relationship between outdoor artificial light at night and myo-
pia, identifying a positive, nonlinear association, suggesting 
that controlling light pollution could help mitigate myopia 
incidence in adolescents.32 In Guangzhou, a metropolitan 
area in southern China, myopia affects 73.1% of children 
aged 15, indicating a significant public health concern.33 In 
contrast, Hong Kong presents a myopia prevalence of 25% 
among children aged six to eight, with higher rates observed 
among boys.34 This trend aligns with reports from Taiwan, 
where myopia prevalence among schoolchildren increased 
dramatically from 5.8% in 1983 to 21% by 2000. In Japan, 
schoolchildren exhibit some of the highest rates globally, with 
prevalence recorded at 76.5% among elementary students 
and 94.9% among junior high students.35 This geographic 
variability within a single country underscores the influence 
of urbanization and lifestyle factors.

In Hong Kong, the surge in myopia among children aged 
six to eight emphasizes both genetic predispositions and envi-
ronmental factors, such as intensive educational demands.34

Taiwan reveals similar insights; risk factors for myopia in 
Taipei’s schoolchildren include parental myopia, frequent 
near-work activities, and limited outdoor time.36

Furthermore, a meta-analysis investigating the asso-
ciation between dry eye disease and myopia highlighted a 
45.1% prevalence of dry eye disease symptoms among my-
opic individuals, underscoring the importance of addressing 
ocular surface health in myopia management strategies.37

Singapore
In Singapore, the prevalence of myopia in children is re-
markably high, with contributing factors including age, sex 
(male), reading habits, height, and parental myopia. A cross-
sectional study of Singaporean Chinese children aged sev-
en to nine found that those who read more than two books 
per week had longer axial lengths, indicative of greater my-
opic progression.38,39 Conventional risk factors such as in-
creased vitreous cavity depth are well documented, though 
certain anterior segment parameters appear to follow differ-
ent growth mechanisms.

Japan and South Korea
High myopia, a growing concern due to its pathological po-
tential, is prevalent in Japan and South Korea, with strong 
associations with higher education levels and urban liv-
ing.35,40–42 These findings reveal consistent age-associated 
increases, with hyperopia diminishing as myopia escalates 
during adolescence.

Europe

United Kingdom
The European eye epidemiology consortium reports a rising 

trend in myopia across Europe, with prevalence increasing 
from 17.8% to 23.5%.43–45 This growth is partially attributed 
to educational advancements, though it goes beyond just 
academic exposure to suggest environmental interplay.

Norway and Denmark
In Norway, the prevalence of myopia among young and mid-
dle-aged adults is 35%, with women aged 20–25 showing 
higher rates than men.46,47 Denmark, historically exhibiting 
stable prevalence, has reported a decline in low myopia, 
attributing changes to variables such as educational attain-
ment and cognitive performance.48,49

America

United States
In the United States, myopia prevalence varies across eth-
nic: 35.2% among non-Hispanic whites, 28.6% among non-
Hispanic blacks, and 25.1% among Mexican Americans.50,51 
The National Health and Nutrition Examination Survey re-
ports a 33.1% myopia rate among adults, emphasizing the 
need for clinical interventions and eyewear solutions.52

Brazil
In Brazil, myopia prevalence follows a unique age-related 
pattern, with the highest rates observed among individuals 
aged 30–39.53 Myopia predominantly affects urban popu-
lations, where lifestyle factors and occupational demands 
likely contribute to its development.54

The epidemiology of myopia across these regions reflects 
complex interactions between genetic, environmental, and 
lifestyle factors. Different countries and regions experience 
varied prevalence and risk profiles, underscoring myopia’s 
multifaceted nature. Each regional demographic necessi-
tates a tailored strategy for myopia management, highlight-
ing the importance of early intervention and public health 
education to curb this visual epidemic.

Risk factors
Several genetic, environmental, and lifestyle factors contrib-
ute to the development and progression of myopia.

Initiating factor for myopia
As shown in Figure 2, contraction of the ciliary muscle, lead-
ing to an elongation of the axial length, may serve as an 
initiating factor in the onset of myopia.55 By comparing the 
axial lengths of the eye under normal ciliary muscle condi-
tions to those when the muscle is in a relaxed state, a slight 
shortening of the eye’s axial length was observed upon mus-
cle relaxation, while a slight elongation was noted when the 
muscle was tense. Furthermore, an investigation into the 
force distribution of ciliary muscle contraction on the eyeball 
was conducted using computerized mechanical modeling.55

Genetic associations
Numerous studies highlight the genetic basis of myopia, 
identifying specific genes associated with its development. 
The HTRA1 gene, known for its association with age-related 
macular degeneration, has shown significant associations 
with myopia in different subpopulations. Specifically, SNP 
rs11200647 is significantly linked to myopia, suggesting 
shared genetic components between myopia and other ocu-
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lar conditions.56 Similarly, a genome-wide association study 
identified the LILRB2 gene as a new risk locus associated 
with pathological myopia, elucidating its role in lipid metabo-
lism disorders, which impair choroidal function and promote 
myopic degeneration.57 Twin studies and familial aggrega-
tions further corroborate this genetic link. Recent advances 
in genome-wide association studies have identified multiple 
loci associated with refractive errors, highlighting the poly-
genic and heterogeneous nature of myopia. These include 
crucial genes such as PAX6, involved in eye development, 
and GJD2, associated with retinal neuronal communica-
tion.58–61 Rare genetic variants have been implicated in high 
myopia, indicating a potential path for targeted therapeutic 
interventions. Notably, genes like ARR3, BSG, and LEP-
REL1 have been linked to high myopia, with their inherit-
ance patterns predominantly following an autosomal domi-
nant model, except for a few with autosomal recessive and 
X-linked patterns.62–64

Gene-environment interactions
Recent investigations have elucidated gene-environment 
interactions in myopia, offering insight into the condition’s 
complex etiology.65 The etiology of myopia is a multifactorial 
interplay involving genetic predispositions, environmental 
exposures, and resultant anatomical changes within the eye. 
A comprehensive understanding of these factors is crucial 
for developing preventive and therapeutic strategies to miti-
gate the burden of myopia in diverse populations.

Gene-environment interactions play a critical role in myo-
pia development. For instance, interactions between genetic 
variants and educational attainment were observed, indicat-
ing that higher education levels may potentiate the effect of 
myopia risk alleles.66 Additionally, genes such as APLP2 in 
humans and animals show variations in refractive error de-

velopment, influenced by time spent reading and engaging 
in near work.67 Other studies highlight the pervasive nature 
of gene-gene and gene-environment interactions, revealing 
a complex interplay between genetic predispositions and en-
vironmental exposures.68

Ethnicity and geographic variations
The prevalence of myopia varies significantly across dif-
ferent ethnicities and geographical regions. For example, 
higher myopia prevalence is observed in urban populations 
compared to rural counterparts, with factors like parental ed-
ucation level influencing prevalence rates.69 Older adults in 
various minority ethnic groups in China show differing myo-
pia prevalence, which is linked to their ethnic backgrounds, 
suggesting environmental influences like altitude and life-
style.70

Thin central corneal thickness
Children with reduced central corneal thickness (CCT) are 
observed to experience more rapid progression of myopia 
and axial length (AL) elongation.71 This trend is consistently 
noted across both Chinese and Caucasian pediatric cohorts, 
supporting its pathophysiological plausibility. Previous stud-
ies have described a negative correlation between corneal 
hysteresis and axial elongation in children, which is statis-
tically associated with CCT, further implying an inverse re-
lationship between CCT and myopia progression in young 
individuals.72 An additional hypothesis suggests a positive 
association between CCT and scleral thickness, considering 
the sclera as a critical pathway through which visual signals 
impact myopia progression. Scleral remodeling, a key factor 
in myopia development, results in a thinner sclera, thereby 
facilitating axial elongation. Therefore, reduced CCT sug-
gests decreased scleral thickness and stiffness, increasing 

Fig. 2. Initiating factors for myopia. When viewing distant objects, the ciliary muscles in the eye are in a relaxed state (A). However, when 
looking at nearby objects, such as reading a book or viewing a smartphone screen, the ciliary muscles contract, causing the axial length of the 
eye to increase (B). This change is an initiative factor in the development of myopia.
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the risk of myopia progression.73 Consequently, CCT could 
potentially act as a surrogate marker for scleral thickness 
and a predictor of the velocity of myopia progression. The 
association between reduced CCT and accelerated myopia 
progression highlights the importance of early myopia con-
trol interventions. It is advisable for medical practitioners 
to consider shorter follow-up intervals for children with thin 
CCT, along with recommendations for increased outdoor ac-
tivities and reduced screen time.71,74

Dietary factors
The relationship between dietary macronutrient intake and 
myopia remains inconclusive, showing no significant associ-
ations with carbohydrates, proteins, or fats.75 However, fresh 
fruit intake appears protective against myopia development, 
particularly in males, while excessive consumption of sugary 
beverages increases myopia risk, especially in females.75

Educational and workload factors
Both genetic predispositions and environmental factors 
contribute significantly to the etiology and progression of 
myopia. The environmental landscape plays a critical role in 
myopia development, with extensive near work and educa-
tional demands acting as key factors. Academic pressures 
and lifestyle choices significantly affect myopia progression. 
Among schoolchildren in Chongqing, China, time spent on 
homework, attending out-of-school courses, and insufficient 
outdoor activities were positively correlated with myopia 
prevalence, suggesting that academic workloads and re-
duced time spent outdoors are key lifestyle risk factors.28 
Similarly, in Hangzhou, extended periods spent on near 
work and inappropriate lighting conditions were significant 
contributors to myopia progression.29

Outdoor activities and screen time
Outdoor activities have a protective effect against myopia. 
Exposure to bright outdoor light is believed to stimulate the 
release of retinal dopamine, which helps reduce excessive 
eye growth. Interventions to increase outdoor activity have 
demonstrated efficacy in reducing myopia progression in 
children, as evidenced by randomized controlled trials in Tai-
wan and China.

Time spent outdoors has been consistently reported as a 
protective factor against myopia. Lack of sufficient outdoor 
activity is a behavioral risk factor contributing to myopia and 
its related complications, such as myopic maculopathy and 
retinal detachment.76 Children’s lifestyle habits, including 
excessive time spent on electronic devices and inadequate 
eye care, contribute to the high prevalence of myopia and 
other refractive errors in urban areas.77

The multifactorial nature of myopia necessitates a com-
prehensive understanding of its genetic, environmental, and 
lifestyle determinants to formulate effective prevention and 
intervention strategies.

Age-specific trends and early-onset myopia
Age-specific analyses reveal an alarming shift towards ear-
lier onset of myopia, with significant public health implica-
tions. Early-onset myopia, defined as developing before 
school age, is increasingly prevalent, with children exhibiting 
rapid progression to high myopia in adulthood. This trend is 
concerning because high myopia heightens the risk of com-

plications such as myopic maculopathy, retinal detachment, 
and glaucoma. The prevalence of early-onset myopia under-
scores the critical need for early intervention strategies and 
preventive measures during childhood.

The burgeoning issue of early-onset high myopia (eoHM) 
presents a noteworthy demographic shift with significant 
implications for ocular health.78 This review synthesizes the 
genetic underpinnings, environmental influences, and clini-
cal characteristics of eoHM, highlighting advances in genetic 
research and potential biomarkers for early detection and 
management.

The quest to unravel the genetic architecture of high my-
opia, particularly in young cohorts, has yielded substantial 
advancements. Šenk et al.79 delineated the genetic basis 
of high myopia in Slovenian children, identifying genetic 
causes in 61.1% of cases, with conditions such as Stick-
ler’s syndrome and retinal dystrophies linked to genes like 
CACNA1F and RPGR. Similarly, Sánchez-Cazorla et al.80 
underscore the polygenic nature of eoHM, with pathogenic 
and likely pathogenic variants comprising 9% of identified 
mutations, furthering our understanding of this complex phe-
notype. These findings resonate with studies from Shaanxi 
province, China, where Lu Ye et al.81 pinpointed mutations in 
genes such as ARR3 and P3H2, contributing to the intricate 
genetic landscape of eoHM.

Understanding eoHM requires a nuanced view of genetic 
predisposition and environmental interplay. Chamarty et al.82 
conducted a retrospective analysis highlighting that, despite 
a high prevalence (63%) of parental myopia among affected 
individuals, no additional risk was attributable solely to pa-
rental refractive status. This suggests that while genetic pre-
disposition plays a significant role, external variables may 
not significantly exacerbate early myopia in preschool years. 
The multifaceted nature of eoHM progression is further il-
lustrated by Matsumura et al.,78 who identified prematurity 
and laser treatment for retinopathy of prematurity (ROP) as 
critical risk factors influencing myopic outcomes.

Distinctive biometric trends elucidate the clinical spectrum 
of eoHM. Yum et al.83 reported that biometric markers such 
as SE and AL are pivotal in determining progression rates in 
preschoolers, with greater baseline myopic SE and longer 
AL serving as predictors of progression. This aligns with ob-
servations by Jiang et al.,84 who documented varied patterns 
of choroidal thickness among eoHM subtypes—indicative 
of differing pathological mechanisms like familial exudative 
vitreoretinopathy and Stickler syndrome—alluding to poten-
tial biomarkers for noninvasive diagnosis and personalized 
treatment strategies.

High myopia and pathological complications
High myopia, particularly pervasive in urban Asian regions, 
has increased from under 10% to between 10% and 20% 
within a decade. This condition carries substantial risks for 
the development of severe ocular pathologies, including 
myopic macular degeneration, cataracts, and retinal detach-
ment, all of which can lead to blindness. For example, the 
incidence of retinal detachment is significantly elevated in 
individuals with high myopia. Efforts to mitigate the progres-
sion from low to high myopia are crucial in preventing these 
severe manifestations and related ocular complications.

High myopia is increasingly recognized as a significant 
public health concern due to its association with a spec-
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trum of pathological ocular complications that can lead to 
irreversible vision impairment. The primary characteristics of 
high myopia include excessive axial elongation, which pre-
disposes individuals to a range of structural and functional 
anomalies in the eye.85–87

Myopic maculopathy is a critical complication of high myo-
pia, and its progression is notably correlated with the pres-
ence of posterior staphyloma (PS). Research indicates that 
eyes with posterior staphyloma are significantly more prone 
to the progression of myopic maculopathy, with a threefold 
increased likelihood compared to those without PS.85 The 
intricate structural deformities associated with wide macular 
posterior staphyloma, particularly its compound forms, exac-
erbate the severity of myopic maculopathy, resulting in poor 
visual acuity and greater axial elongation.88 Additionally, 
morphological studies using optical coherence tomography 
(OCT) reveal that PS significantly influences fundus morpho-
logical characteristics, with variations in the curvature of the 
sclera potentially impacting the development of related reti-
nal pathologies.89

The continuous elongation of the axial length in high 
myopia patients is intricately linked to the severity of my-
opic maculopathy, particularly through its relationship with 
choroidal thinning.90 Choroidal thickness is a critical factor, 
with severe myopic maculopathy exhibiting notably reduced 
choroidal thickness compared to milder forms. This anatomi-
cal relationship underscores the potential role of choroidal 
degeneration in the pathophysiology of progressive myopic 
visual deterioration.

The relationship between high myopia and glaucoma, es-
pecially primary open-angle glaucoma, is well-documented, 
with increasing myopia severity correlating non-linearly with 
elevated glaucoma risk.86,87 The thinning of the retinal nerve 
fiber layer, detected via OCT, often precedes functional loss, 
suggesting that structural changes in highly myopic individu-
als warrant early detection and intervention strategies to pre-
serve visual function. Furthermore, morphological changes 
in the optic nerve, such as defects in the lamina cribrosa, 
may complicate early glaucoma detection, necessitating 
comprehensive and regular examinations.87

The dome-shaped macula (DSM) phenotype in high myo-
pia presents unique microcirculatory characteristics that are 
significantly distinct from those without DSM. Variations in 
the microvasculature, including reduced choroidal perfu-
sion, are associated with DSM and contribute to variations in 
clinical outcomes.91 The role of structural parameters, such 
as scleral thickness and foveal choroidal perfusion, in the 
development and severity of DSM signifies an area ripe for 
further exploration, with potential implications for therapeutic 
interventions aimed at ameliorating blood perfusion issues 
in high myopia.

The models used for myopia research
In the pursuit of elucidating the mechanisms underlying myo-
pia, animal models have played a pivotal role in advancing 
our understanding of this complex refractive error.92 Among 
the most widely utilized animal models are those involving 
form-deprivation and lens-induced myopia, frequently con-
ducted in species such as chicks, mice, guinea pigs, and 
tree shrews.93 These models are invaluable due to their 
ability to mimic critical aspects of human myopia, facilitating 
the investigation of genetic, optical, and environmental influ-

ences on ocular development.
Chickens, in particular, have been extensively used in 

myopia research due to the rapid eye growth observed dur-
ing their early development, which allows for timely experi-
mental manipulation and observation.94 The chick model is 
instrumental in studying the effects of lens-induced altera-
tions in focal plane positioning and subsequent compensa-
tory ocular responses. Similarly, guinea pigs and tree shrews 
offer mammalian models with ocular physiology more akin 
to humans, enabling the exploration of myopic progression 
within a framework that closely parallels human eye growth 
patterns.95–97

Moreover, murine models, such as mice, are genetically 
tractable, providing opportunities for exploring the genetic 
underpinnings of myopia.98 The implementation of gene 
knockout and transgenic techniques in mice has greatly ex-
panded the scope for investigating the genetic and molecu-
lar pathways implicated in myopia development.

By employing these animal models, researchers are not 
only able to simulate environmental conditions that influence 
myopia onset but also test potential pharmacological inter-
ventions, thus paving the way for translational advances in 
myopia management.

In summary, myopia presents a growing global public 
health concern, with epidemiological projections indicating a 
significant rise in affected individuals. This upsurge in myo-
pia prevalence, particularly in urbanized regions of East and 
Southeast Asia, aligns with substantial variations across dif-
ferent geographic areas. Factors contributing to this variation 
include lifestyle choices such as extensive near work and 
reduced outdoor activities, in addition to socioeconomic and 
educational influences. Genetic predispositions also play a 
crucial role, with numerous studies identifying specific genes 
related to myopia development, emphasizing complex gene-
environment interactions. A notable increase in high myo-
pia, particularly among younger populations, underscores 
the urgency to address potential pathological complications, 
including myopic maculopathy and retinal detachment. This 
condition’s multifactorial nature requires a comprehensive 
understanding of genetic, environmental, and lifestyle deter-
minants to formulate effective strategies for prevention and 
management. Highlighting the importance of early interven-
tion, public health measures must prioritize education and 
behavioral adjustments to mitigate the adverse effects of 
myopia progression. Moreover, animal models continue to 
be instrumental in refining our understanding of the underly-
ing mechanisms, contributing to translational efforts aimed 
at addressing this visual epidemic.

Diagnostic approaches in myopia
The diagnosis of myopia is crucial for effective management 
strategies aimed at mitigating its progression and effects. 
Traditional diagnostic approaches include subjective and 
objective refraction assessments, visual acuity tests, and 
comprehensive ocular examinations. Subjective refraction 
relies on patient interaction, typically using a phoropter or 
trial lens set, to determine the optimal lens power for visual 
clarity. In contrast, objective refraction employs autorefrac-
tors or retinoscopes to assess refractive error without patient 
input, providing an automated and precise measurement.99

Visual acuity tests, fundamental for myopia screening, of-
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ten utilize the Snellen chart to evaluate a patient’s ability to 
discern letters or symbols at a set distance. The Early Treat-
ment Diabetic Retinopathy Study chart offers an alternative, 
using the log of the minimal angle of resolution principle, 
which is favored in both research and clinical settings for 
its precision. Standard visual acuity is recorded in various 
notations, such as 6/6 in meters or 20/20 in feet, indicating 
normal distance vision. Myopia severity is frequently catego-
rized, with mild myopia ranging from −0.50 to −3.00 D, mod-
erate from −3.00 to −6.00 D, and high myopia beginning at 
−6.00 D.100

Comprehensive ocular examinations involve assessing 
both anterior and posterior segments through slit-lamp bi-
omicroscopy and fundoscopy. This helps detect structural 
anomalies and potential complications, such as retinal de-
tachment or myopic maculopathy, associated with high myo-
pia.

Advances in diagnostic technologies
Recent advancements have significantly improved the preci-
sion and understanding of myopia diagnostics. OCT stands 
out as a pivotal tool, providing high-resolution cross-section-
al imaging of the retina.101 It is essential for identifying reti-
nal changes such as macular degeneration and vitreoretinal 
interface abnormalities commonly associated with myopia.

Optical biometry, utilizing technologies like partial coher-
ence interferometry and swept-source OCT, facilitates pre-
cise axial length measurements, a critical factor in under-
standing myopia progression. These precise measurements 
are invaluable not only for diagnostics but also for evaluating 
therapeutic interventions aimed at slowing myopic progres-
sion.102

Further technological advancements, such as corneal to-
pography and tomography, have enhanced the understand-
ing of the corneal contribution to refractive error, offering 
detailed mapping of corneal shape and thickness.103 These 
techniques are particularly useful for assessing candidates 
for corneal refractive surgeries as a treatment option for 
myopia. Wavefront aberrometry, another emerging technol-
ogy, provides comprehensive analyses of aberrations in the 
eye, contributing to a better understanding of visual quality 
in myopic patients.

School-based screening and pathological myopia
Early detection of myopia is crucial for preventing its progres-
sion to high myopia, which increases the risk of significant 
visual impairment. School-based screening programs, which 
predominantly use uncorrected visual acuity tests combined 
with non-cycloplegic autorefraction, enable early identifica-
tion and management of myopic children. These programs 
help detect myopia in school-age children with high sensitiv-
ity and specificity.

Pathological myopia, a major cause of reduced visual 
acuity, especially in East Asia, necessitates careful fundus 
examination to confirm and assess myopic pathologies.6 
Fundus photography, while useful, may require enhance-
ments such as OCT or ultra-wide-field imaging for more ac-
curate lesion detection and characterization. The META-PM 
classification system offers a detailed categorization of my-
opic maculopathy, aiding in the accurate staging and diagno-
sis of this severe form of myopia.6

The landscape of myopia diagnostics is robust, combining 

traditional methods with advanced technologies to enhance 
diagnostic precision and provide insights into the pathophys-
iology of myopia. These integrated approaches are pivotal 
for optimizing patient outcomes in myopia management, 
underscoring the importance of both classic and innovative 
tools in clinical practice.

In summary, the diagnosis of myopia involves a blend of 
traditional and advanced technological approaches, essen-
tial for effective management and mitigation of its progres-
sion. Traditional diagnostic methods encompass subjective 
and objective refraction, visual acuity tests, and thorough 
ocular examinations. Subjective refraction depends on pa-
tient feedback to determine corrective lens power, while ob-
jective refraction utilizes instruments like autorefractors for 
automated precision. Visual assessments, using charts like 
Snellen or the Early Treatment Diabetic Retinopathy Study, 
provide a baseline for evaluating the severity of myopia, 
which is clinically categorized by the degree of diopter devia-
tion. Comprehensive examinations assess ocular health, de-
tecting potential complications such as retinal detachment. 
Advances in technology have enriched myopia diagnostics, 
including Optical Coherence Tomography for detailed retinal 
imaging and optical biometry for precise axial length meas-
urements, critical for understanding myopia progression. 
Emerging techniques like corneal topography and wavefront 
aberrometry offer detailed insights into corneal and visual 
quality, respectively. School-based screening programs em-
phasize early detection, while sophisticated methods like 
OCT enhance the evaluation of pathological myopia. Over-
all, these diagnostic advancements are crucial for optimizing 
patient management strategies and understanding myopia’s 
underlying mechanisms.

Interventional strategies for myopia manage-
ment
Myopia, a prevalent refractive error, necessitates a multifac-
eted approach for its management and control. Intervention-
al strategies encompass optical, pharmacological, lifestyle, 
and surgical options. Each strategy targets different aspects 
of myopia progression, requiring a personalized approach 
for effective management.

Traditional single-vision spectacles
Optical solutions are the primary line of defense against my-
opia and include glasses and contact lenses tailored for both 
corrective and control purposes. Traditional single-vision 
spectacles correct refractive errors and improve visual acuity 
but do not address myopia progression associated with axial 
elongation of the eye. Studies demonstrate that under-cor-
rection can worsen myopia progression by up to 30%.104,105 
Thus, full correction remains essential for immediate visual 
correction, even if it does not slow progression.

Peripheral defocus spectacles
Peripheral defocus spectacle lenses have the potential to 
slow myopia progression by modulating the visual stimuli re-
ceived by the peripheral retina. These lenses, through vari-
ous designs and optical strategies, demonstrate significant 
potential in controlling myopia progression in children. De-
spite varying efficacies and the need for customization, evi-



Nat Cell Sci 2025;3(1):62–76 
https://doi.org/10.61474/ncs.2024.00049

Nature Cell and Science | www.cellnatsci.com 69

dence supports their use as integral components of myopia 
management strategies.

A comprehensive meta-analysis consolidated findings 
from several trials, affirming that peripheral defocus lenses 
significantly delay myopia progression compared to single-
vision lenses (SVLs), though they did not show significant 
control over axial length growth. The enhanced myopia con-
trol effect suggests a distinct advantage for peripheral defo-
cus lenses, with meta-analytic comparisons confirming their 
statistical superiority in controlling myopia progression.106

A study by Radhakrishnan et al. explored two designs 
of multiple-segment lenses—MiyoSmart and Stellest—and 
their impact on myopia progression over two years. The find-
ings suggested that while initial efficacy was high, it declined 
over time but remained substantial compared to single-vision 
corrections. These lenses leverage asymmetrical through-
focus image changes, leading to potential control through 
peripheral myopic defocus.107 The efficacy appears to reflect 
an absolute, rather than a proportional, mechanism of ac-
tion. A study in Spain assessed the short-term efficacy of 
myopic peripheral defocus lenses, which demonstrated sig-
nificant potential in slowing myopia progression over a one-
year period. Children wearing myopic peripheral defocus 
lenses exhibited a 39% reduction in absolute axial length 
growth compared to the SVL group, marking a statistically 
significant advancement in myopia control.108 These results 
underscore the importance of optical designs in varying axial 
elongation rates. Zhang et al. explored the role of baseline 
relative peripheral refraction in influencing myopia control ef-
ficacy in children using Defocus Incorporated Multiple Seg-
ments (DIMS) lenses. The study concluded that individuals 
with baseline hyperopic relative peripheral refraction benefit-
ed more from myopia control, indicating the significance of 
customizing myopic defocus based on individual peripheral 
refractive profiles.109 This finding emphasizes that tailored 
optical interventions could optimize control strategies. Fur-
thermore, a randomized clinical trial demonstrated that spec-
tacle lenses with highly aspherical lenslets (HAL) and slightly 
aspherical lenslets significantly reduced the rate of myopia 
progression and axial elongation over a two-year period 
compared to SVLs. HAL was found to be more effective than 
slightly aspherical lenslets, with greater efficacy observed in 
children who wore HAL for at least 12 h daily. These findings 
suggest potential benefits of aspherical lenslets in control-
ling myopia progression.104

Multifocal soft contact lenses
In recent years, multifocal soft contact lenses have gar-
nered attention as a promising approach for controlling 
myopia progression in younger populations. Various stud-
ies, including those reviewed by the American Academy of 
Ophthalmology, underscore the efficacy of these lenses.110 
A comparative analysis of multifocal lenses versus single-
vision spectacles or contact lenses revealed a consistent 
reduction in myopic progression. Specifically, the changes 
in SE ranged from 0.22 to 0.81 D across treatment groups 
compared to 0.50 to 1.45 D in control cohorts over at least 
one year.110 Additionally, axial elongation showed a simi-
lar trend, with a notable decrease in treatment groups. A 
meta-analysis further supported these findings, highlight-
ing significant reductions in refraction progression and axial 
elongation in children using peripheral-add multifocal soft 

contact lenses compared to controls.111 The randomized, 
double-masked clinical trial conducted by Chamberlain 
et al. over a three-year period established the efficacy of 
MiSight daily disposable soft contact lenses in significantly 
reducing myopia progression among children aged eight to 
twelve years. The study demonstrated a 59% reduction in 
spherical equivalent refractive error and a 52% reduction 
in axial length growth compared to the control group, with 
no serious ocular adverse events reported. These findings 
underscore the potential of MiSight lenses as a viable in-
tervention for myopia control.112 A randomized controlled 
trial demonstrated that DIMS spectacle lenses significantly 
slowed myopia progression and axial elongation in children 
compared to single-vision lenses. Over two years, children 
in the DIMS group exhibited 52% slower myopia progres-
sion and 62% less axial elongation, indicating the efficacy of 
DIMS lenses in providing clear vision with constant myopic 
defocus.113 These outcomes point to the ability of multifo-
cal lenses to curtail natural myopic progression and warrant 
their inclusion in myopia management strategies.

The conceptual foundation for multifocal lenses lies in the 
manipulation of peripheral vision to prevent axial elongation. 
Research has shown that peripheral myopic defocus can 
potentially prevent the elongation associated with hyperopic 
defocus.114 Dual-focus contact lenses, by imposing a sec-
ondary focal plane, elicit modified central retinal responses, 
a key factor in halting the advancement of myopia.115 Multi-
focal lenses have demonstrated a propensity to modify these 
electrophysiological responses, particularly within the cen-
tral 10° of the retina.115

Safety remains a paramount concern in evaluating new 
treatment modalities for children. Previous studies have 
reported minimal adverse events associated with the use 
of multifocal soft contact lenses.110 A meta-analysis docu-
mented an incidence rate of 0.065 for contact lens-related 
adverse events,111 indicating a favorable safety profile. Ran-
domized controlled trials also affirmed the safety of the lens-
es, with most side effects being transient, such as dizziness 
and minor visual disturbances.114

The DIMS spectacle lenses, parallel to multifocal lenses, 
have yielded significant results in slowing myopia progres-
sion.116 A study encompassing a diverse demographic con-
cluded the efficacy of these lenses in clinical practice, pro-
viding a benchmark for multifocal lens designs. Conversely, 
MiSight 1 day lenses have shown clinical success in inhibit-
ing myopia progression among Korean children, supporting 
their use when orthokeratology lenses are unsuitable.117

While existing evidence supports the reduced progression 
of myopia with multifocal contact lenses, questions remain 
concerning optimal duration and effects post-treatment dis-
continuation.110 Further research, including diverse popula-
tions and real-world settings, is essential to validate the gen-
eralizability of these findings.114 Observational studies offer 
a prospective avenue for mitigating biases associated with 
industry-funded research and should be prioritized in future 
endeavors.114

Multifocal soft contact lenses emerge as a robust, safe, 
and effective option to address the burgeoning rates of child-
hood myopia. They represent a superior alternative to tradi-
tional single-vision corrections, thanks to their unique design 
that manipulates peripheral vision, thus slowing down myo-
pia progression.
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Orthokeratology
Orthokeratology has emerged as a significant intervention 
for myopia control, offering both inhibition of axial length 
elongation and reshaping of the cornea in myopic children. 
This review synthesizes findings from recent studies to pro-
vide a cohesive understanding of the efficacy, mechanisms, 
safety, and predictors of orthokeratology in myopia control.

Orthokeratology lenses have been proven effective in 
slowing axial elongation in children with myopia. A system-
atic review found that smaller back optical zone diameters 
in orthokeratology lenses resulted in more significant reduc-
tions in axial length growth compared to larger back optical 
zone diameters, highlighting the importance of lens design 
in therapeutic outcomes.118 A three-year follow-up study 
conducted in Scandinavian children also demonstrated con-
sistent efficacy, regardless of the age at which treatment 
was initiated.119 Furthermore, a study comparing different 
orthokeratology lens designs revealed that those with a vi-
sion shaping treatment design had a more favorable impact 
on retarding axial length elongation compared to traditional 
corneal refractive therapy designs.120

The mechanism by which orthokeratology lenses inhibit 
myopia progression involves reshaping the cornea and mod-
ulating peripheral myopic defocus. Peripheral eye length 
evaluation using MRI showed that orthokeratology lenses 
led to a significant reduction in central axial length, with pe-
ripheral elongation occurring only beyond certain angles.121 
Changes in choroidal vasculature and increased choroidal 
thickness have been observed during orthokeratology treat-
ment, suggesting that these vascular changes may play a 
role in regulating ocular elongation.122 Dynamic modifica-
tions to corneal curvature and the e-value were correlated 
with control over axial elongation, as greater changes in cor-
neal shape were associated with smaller increases in axial 
length.123

Predicting the long-term efficacy of orthokeratology lens 
correction involves evaluating baseline characteristics. 
Short-term efficacy has been shown to be a strong predictor 
of long-term therapeutic success, with age and baseline ax-
ial length serving as significant determinants.124 A crossover 
study further corroborated the stable efficacy of orthokeratol-
ogy over periods extending up to three years, demonstrating 
its reliability as a long-term intervention.119

The safety profile of orthokeratology lenses, particularly 
concerning the potential for adverse events, has been a ma-
jor consideration in their prescription for children. A pooled 
analysis of safety data showed that while adverse events did 
occur in a minority of orthokeratology wearers, these were 
mostly minor, including corneal abrasion and staining, with 
no serious adverse events reported.125 Compliance with lens 
maintenance protocols significantly mitigates these risks, 
making orthokeratology a viable myopia control method 
when appropriately managed.126

When compared to alternative methods, such as SVLs 
and HAL, orthokeratology exhibited superior control over 
axial length growth, although HAL showed slightly better out-
comes in managing low myopia.127 Additionally, orthokera-
tology lenses enhance vision-related quality of life by provid-
ing spectacle-free daytime vision, making them a beneficial 
alternative to conventional corrective measures.126

Orthokeratology lenses offer a robust approach for man-
aging myopia progression in children, supported by evi-

dence of efficacy in controlling axial elongation, reshaping 
the cornea, and elucidating potential mechanisms at the 
vascular level. While safety remains a critical consideration, 
proper compliance significantly reduces risks, underscoring 
orthokeratology’s growing prominence as an intervention 
strategy.

Atropine eye drops for myopia
Pharmacological approaches are increasingly being ex-
plored, with atropine standing out as the most common 
agent. Atropine eye drops, particularly at low doses (0.01–
0.05%), have gained considerable attention due to their 
efficacy in slowing eye growth and myopic progression.128 
Evidence suggests that atropine, a muscarinic antagonist, 
positively impacts refractive error and AL in myopic children 
across various concentrations and treatment regimens. This 
review synthesizes findings from several key studies evalu-
ating atropine’s effectiveness as a monotherapy and in com-
bination with optical interventions.

Multiple studies underscore atropine’s efficacy in mitigat-
ing myopic progression across various concentrations. A net-
work meta-analysis involving 5,422 eyes demonstrated that 
atropine concentrations such as 0.01%, 0.02%, and 0.05% 
significantly reduced progression rates in axial elongation 
compared to placebo, with the highest efficacy observed at 
1%, albeit at the cost of increased risks, such as photopho-
bia.128–129 A systematic review corroborated these findings, 
indicating that concentrations of 0.01% and higher are ben-
eficial in myopia control, resulting in favorable changes in 
spherical equivalent refraction and AL.129 Notably, 0.01% at-
ropine demonstrated moderate efficacy in reducing myopia 
progression without significant adverse effects, making it a 
preferred choice for low-dose treatments.130

Studies have also highlighted the comparative efficacy of 
atropine in conjunction with optical treatments. A compara-
tive study involving 387 children evaluated 0.02% atropine 
against peripheral myopic defocus design spectacle lenses 
and orthokeratology.131 Results indicated that while or-
thokeratology showed superior control over axial elongation, 
0.02% atropine still offered notable benefits, particularly in 
younger children. Furthermore, combination therapies, such 
as 0.01% atropine with orthokeratology or DIMS, showed en-
hanced control over spherical equivalent refraction and AL, 
suggesting a synergistic effect.132 The integration of 0.01% 
atropine with orthokeratology lenses was further evaluated 
in observational studies,133 which illustrated that the addi-
tion of atropine could significantly reduce AL elongation in 
fast-progressing myopic children compared to orthokera-
tology lenses alone. This combination approach optimized 
therapeutic outcomes, addressing individual variability in re-
sponse to monotherapy.

Long-term studies provide insights into the durability of 
atropine’s effects and potential rebound phenomena post-
treatment cessation. The Low-Concentration Atropine for 
Myopia Progression (LAMP) study, conducted over five 
years, revealed that low-concentration atropine, with a fol-
low-up pro re nata regimen, sustained myopia control, with 
the highest concentration of 0.05% demonstrating continued 
efficacy.134 However, a randomized controlled trial identified 
a significant rebound in myopic progression after the discon-
tinuation of 0.01% atropine, underscoring the need for con-
tinuous monitoring and potential re-treatment.135
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The tolerability of atropine at low concentrations remains 
a critical factor in its recommendation for pediatric myopia 
management. A Danish trial reported that 0.01% atropine 
was well-tolerated over two years, with manageable adverse 
events.136 Enhanced pupil dilation and photophobia risks 
were notably higher at higher concentrations,129 suggesting 
the necessity for judicious selection based on risk-benefit as-
sessments.

The LAMP study demonstrated that daily administration of 
0.05%, 0.025%, and 0.01% atropine eye drops significantly 
reduced myopia progression compared to placebo, with a 
concentration-dependent effect evident after one year. The 
0.05% concentration was the most effective in controlling 
spherical equivalent changes and axial length elongation, 
without negatively impacting visual acuity or quality of life. 
These results support the use of low-concentration atropine, 
particularly at 0.05%, as a viable option for myopia control 
in children.137 The two-year LAMP study demonstrated that 
0.05% atropine eye drops maintained superior efficacy in re-
ducing myopia progression compared to 0.025% and 0.01%, 
with efficacy twice that of the lowest concentration. Switching 
the placebo group to 0.05% atropine significantly reduced 
progression rates, and all concentrations were well-tolerated 
without detrimental effects on visual acuity or quality of life. 
These findings affirm 0.05% atropine as the most effective 
and optimal concentration for long-term myopia control.138 
In the third year of the LAMP study, continued treatment 
with low-concentration atropine, particularly 0.05%, dem-
onstrated superior efficacy in slowing myopia progression 
compared to a washout regimen, with significantly less pro-
gression in spherical equivalent and axial length. Although 
a concentration-dependent rebound effect was observed 
upon cessation, the clinical impact was minimal. Continuing 
treatment or stopping at an older age and lower concentra-
tion reduced rebound effects, reinforcing 0.05% atropine as 
the optimal choice for sustained myopia control over three 
years.139

Atropine eye drops, particularly at low concentrations 
such as 0.01% and 0.05%, are effective and generally safe 
options for controlling myopic progression in children. While 
high concentrations offer robust efficacy, they come with in-
creased risk profiles. Integrating atropine with optical treat-
ments such as DIMS and orthokeratology can optimize ther-
apeutic outcomes, although careful consideration is needed 
for potential rebound effects post-treatment.

Lifestyle modifications
Emerging research underscores the impact of lifestyle on 
myopia development. Increased near-work activities are cor-
related with the onset of myopia, while outdoor activities help 
protect against its progression.140 Exposure to natural light 
and engagement in distance viewing can mitigate progres-
sion, promoting healthier eye development.141

Parental and educational interventions encourage bal-
anced visual activities and sufficient outdoor time. These 
lifestyle modifications are integral to comprehensive myopia 
management, particularly as the global prevalence of myo-
pia continues to rise.

Surgical options
Surgical interventions for myopia have evolved significantly, 
offering a variety of procedures tailored to different patient 

needs and clinical profiles. Among the most prominent tech-
niques is laser-assisted in situ keratomileusis (LASIK), which 
reshapes the corneal stroma using an excimer laser to cor-
rect refractive errors.142 LASIK is favored for its rapid visual 
recovery and accuracy, although it requires adequate corne-
al thickness. Another innovative procedure is small incision 
lenticule extraction (SMILE), which utilizes a femtosecond la-
ser to create a lenticule that is then removed through a small 
incision.143 SMILE is noted for its minimally invasive nature 
and potential to reduce dry eye symptoms while maintaining 
corneal biomechanics. For patients with higher degrees of 
myopia or thinner corneas, implantable collamer lenses pro-
vide an alternative. Implantable collamer lenses are inserted 
behind the iris and in front of the natural lens, providing re-
versible correction without altering the corneal structure.144 
These surgical options collectively expand the therapeutic 
armamentarium for myopia, each with specific indications, 
benefits, and potential risks, enabling personalized patient 
care. Each surgical intervention involves specific risks and 
benefits, requiring detailed preoperative evaluations and dis-
cussions between the patient and ophthalmologist to ensure 
informed decision-making.

Others
The study by Jiang et al. evaluates the efficacy of repeated 
low-level red-light therapy for myopia control in a pediat-
ric population through a multicenter randomized controlled 
trial. The findings suggest a significant reduction in myopia 
progression among children receiving this intervention com-
pared to the control group. These results indicate potential 
therapeutic benefits and warrant further investigation into its 
long-term impact on myopia management.145

In summary, myopia management requires a comprehen-
sive, multidisciplinary approach that integrates diverse inter-
ventional strategies. Optical interventions, such as peripheral 
defocus spectacle lenses and multifocal soft contact lenses, 
modify peripheral visual stimuli, thus mitigating progression 
and elongation rates. Orthokeratology demonstrates efficacy 
by reshaping the cornea and influencing peripheral defocus, 
yielding significant results in controlling axial elongation. 
Pharmacologically, low-dose atropine eyedrops, particularly 
in concentrations of 0.01% to 0.05%, exhibit effectiveness in 
slowing myopic progression, with reduced adverse effects 
compared to higher concentrations. Combining atropine with 
optical aids may enhance overall outcomes. Furthermore, 
lifestyle modifications, emphasizing increased outdoor ex-
posure and balanced visual activities, are fundamental in 
comprehensive myopia management, given their protective 
effects against progression. Surgical options, though not 
first-line treatments, provide viable corrective solutions for 
refractory cases, with advances such as LASIK, SMILE, and 
implantable collamer lenses offering tailored patient care op-
tions. Emerging modalities, like repeated low-level red-light 
therapy, also show promise, necessitating further explora-
tion. This integrative framework highlights the necessity of 
personalized strategies to effectively address pediatric myo-
pia on a global scale.

Conclusions
Myopia represents an escalating global public health chal-
lenge, significantly influenced by genetic predispositions 
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and lifestyle factors such as extensive near work and lim-
ited outdoor activities, particularly in urbanized areas of East 
and Southeast Asia. Comprehensive diagnostic techniques, 
ranging from traditional methods to advanced technologies 
like Optical Coherence Tomography, are vital in effectively 
detecting and managing myopia. A multidisciplinary man-
agement approach—including optical, pharmacological, and 
lifestyle interventions—facilitates the mitigation of myopia 
progression and related complications. Future efforts should 
prioritize early intervention strategies and further investigate 
emerging therapeutic modalities, ensuring a nuanced under-
standing of the multifactorial nature of myopia to devise ef-
fective prevention and management frameworks.
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