
Copyright © 2024 Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-
Noncommercial 4.0 International License (CC BY-NC 4.0), permitting all non-commercial use, distribution, and reproduction 
in any medium, provided the original work is properly cited.

207

Nature Cell and Science 2024;2(4):207–223 
https://doi.org/10.61474/ncs.2024.00043

Original Article

Using a Systems Biology Approach to Construct Genome-
Wide Genetic and Epigenetic Networks for Investigating 
the Pathogenesis and Designing Multi-Molecule Drugs for 
Frontotemporal Dementia via a Deep Neural Network-based Drug-
Target Interaction Model

Wei-Lun Chang and Bor-Sen Chen*

Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 
300044, Taiwan
*Correspondence to: Bor-Sen Chen, Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, Na-
tional Tsing Hua University, Hsinchu 300044, Taiwan. ORCID: https://orcid.org/0000-0003-1644-6106. Tel: +886-35731155, Fax: +886-5715971, E-mail: 
bschen@ee.nthu.edu.tw
Citation of this article: Chang WL, Chen BS. Using a Systems Biology Approach to Construct Genome-Wide Genetic and Epigenetic Networks for In-
vestigating the Pathogenesis and Designing Multi-Molecule Drugs for Frontotemporal Dementia via a Deep Neural Network-based Drug-Target Interaction 
Model. Nat Cell Sci 2024;2(4):207–223. doi: 10.61474/ncs.2024.00043.

Introduction
Frontotemporal dementia (FTD) is a degenerative disease 
that primarily affects the frontal and anterior temporal lobes. 
It is the third most common form of primary dementia, follow-
ing Alzheimer’s disease and Lewy body dementia. While the 
exact cause of FTD remains unclear, genetic factors play a 

significant role, accounting for approximately 40% of cases. 
The disease is largely driven by these genetic factors and 
the degeneration of neurons in these regions. Patients typi-
cally experience a decline in various functions, particularly 
language and social behavior. FTD is a type of early-onset 
dementia that usually manifests between the ages of 45 
and 64, with an average onset around 57.1 The incidence is 
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roughly equal between men and women. Unlike Alzheimer’s 
disease, which predominantly affects memory, FTD rarely 
involves memory impairment. Instead, early signs include 
behavioral abnormalities, deficits in executive function, and 
language difficulties, making it challenging for patients to 
recognize the condition earlier on.2

Currently, FTD cannot be completely cured, and drug de-
velopment is still in progress. Only a few drugs have been 
tested in live mouse models, typically by observing whether 
early injection of the drug in mice with frontotemporal de-
generation can prevent the occurrence of motor function 
abnormalities.3 Common drugs used to treat FTD include ra-
pamycin, spermidine, carbamazepine, tamoxifen, and other 
autophagy activators. These drugs help reduce the overex-
pression of TDP-43 protein.4 Rapamycin, an mTOR inhibitor, 
is a central regulator of cell growth, controlling various cellu-
lar processes. In tumor cells, this regulatory mechanism can 
become dysregulated, leading to uncontrolled cell growth. 
Therefore, rapamycin is used to inhibit mTOR, helping to 
restore normal cellular function and prevent tumor progres-
sion.5 In addition to rapamycin, drugs such as spermidine, 
carbamazepine, and tamoxifen can provide some control 
over FTD. Some individuals may also take antidepres-
sants or antipsychotic medications to alleviate behavioral 
and emotional issues associated with FTD. However, these 
come with significant side effects, including neurological 
damage, drowsiness, dizziness. Currently, common thera-
pies for FTD also include supportive therapies, speech ther-
apy, and cognitive-behavioral therapy. These methods focus 
on improving patients’ quality of life by controlling symptoms 
and enhancing communication and cognitive abilities.6

As noted above, there is currently no single drug or treat-
ment that can completely cure FTD. However, the drug dis-
covery process integrates computational techniques, experi-
mental validation, translational models, and clinical trials to 
uncover potential therapeutic candidates. Despite consider-
able progress in biotechnology and an enhanced compre-
hension of biological systems, drug discovery remains an 
expensive, lengthy, and inefficient endeavor, with a high fail-
ure rate in developing new treatments.7 Only about 10–20% 
of candidate drugs successfully progress from the start of 
clinical trials to market approval, a figure that has remained 
largely unchanged for decades.8 Thus, there is a pressing 
need for a more efficient and systematic approach to drug 
design. Drug-target interaction (DTI) is a crucial aspect of 
the drug development process. When a drug binds to its tar-
get, such as a protein or gene, it alters the target’s biological 
activity, helping to restore normal function. Predicting drug-
target interactions is vital in drug discovery, as it can improve 
efficiency and reduce costs.9

DTI prediction often involves four main types of targets: 
proteins, diseases, genes, and side effects.10 Discovering 
new targets for existing or discontinued drugs—a process 
known as drug repurposing—is another important aspect of 
drug discovery. With advancements in pharmacology, the 
‘multi-target, multi-drug’ model has gained widespread ac-
ceptance, replacing the traditional ‘one target, one drug’ ap-
proach. One key insight is that drugs often target multiple 
proteins rather than focusing on just one. Therefore, multi-
molecular combination drugs are a current trend in drug de-
velopment. These drugs can work synergistically to enhance 
the effectiveness of each drug in the combination and help 

reduce drug resistance, toxicity, and adverse reactions.11

In this study, we developed a workflow, illustrated in Fig-
ure 1. Based on the previous discussion, the ‘multi-target, 
multi-drug’ model is the prevailing approach. Our primary 
goal is to optimize multi-target treatment strategies by de-
signing drugs that can simultaneously target multiple biologi-
cal pathways, maximizing therapeutic efficacy. For example, 
FTD involves multiple biological signaling pathways and 
pathological mechanisms, so multi-target drugs are better 
suited to inhibit various aspects of the disease. Additionally, 
our research aimed to enhance efficacy while minimizing 
drug resistance. To address drug resistance, we are inves-
tigating how simultaneous interference with multiple targets 
can reduce the likelihood of pathogens or tumor cells devel-
oping resistance. The diversity of targets in multi-molecular 
drugs makes it more difficult for pathogens or cancer cells to 
evade treatment, thereby improving overall efficacy.

Materials and methods
To construct the core genome-wide genetic and epigenetic 
networks (GWGENs), we downloaded the microarray data 
from the GSE140830 dataset (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE140830) available through the 
National Center for Biotechnology Information. This data-
set includes data from FTD patients and healthy control. 
For data preprocessing, we first divided the original dataset 
into five categories: gene, transcription factor (TF), receptor, 
lncRNA, and miRNA, and then proceeded to rank them.

Research ethics
Ethical approval is not applicable due to the use of the pub-
licly available dataset GSE140830 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE140830).

Using this dataset, we constructed the core GWGENs 
step by step, as shown in Figure 1.

(I) Construction of Candidate GWGENs: The first step 
involves creating candidate GWGENs, which include the 
candidate Protein-Protein Interaction Network (PPIN) and 
the candidate Gene Regulatory Network (GRN) identified 
through tree-based mining methods.

(II) Identification of Real GWGENs: To remove false posi-
tive data, we established all possible regression systems for 
each node and used the least squares method for system 
identification. This method applies a system order detection 
approach to identify the real GWGENs for FTD and healthy 
control using whole genome microarray data.

(III) Extraction of Core GWGENs: We employed the Prin-
cipal Network Projection (PNP) method, which uses singu-
lar value decomposition to select the top 6,000 nodes with 
the highest projection values in the GWGENs. These 6,000 
nodes, which exhibit the strongest projections on significant 
singular vector structures accounting for 85% of the real 
GWGENs, are considered the core GWGENs for further 
analysis.

(IV) Designing a multi-molecule drug for the treatment 
of FTD: After identifying the core GWGENs, we annotated 
them using KEGG pathways to identify core signaling path-
ways in FTD and healthy control. Based on various research 
records, we selected significant biomarkers related to critical 
pathogenic mechanisms as drug targets, i.e., TAU, GSK-3β, 
STAT3, ATG5, WDR41, and RIPK1. Using the deep neural 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140830
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Fig. 1. The flowchart of systems drug discovery for therapeutic treatment of frontotemporal dementia (FTD). (I) Big data mining from gene 
regulatory network (GRN) and protein-protein interaction network (PPIN) databases to construct candidate genome-wide genetic and epigenetic 
networks (GWGENs); (II) Microarray data of FTD and healthy control are employed to construct real GWGENs of FTD and healthy control using 
a system identification method; (III) Principal network projection (PNP) method is used to extract core GWGENs from real GWGENs for Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathway annotation to identify the core signaling pathways of FTD and healthy control and to identify 
significant biomarkers; (IV) A deep neural network (DNN)-based drug-target interaction (DTI) model, trained with DTI databases, is used to predict 
candidate molecular drugs, which are screened based on drug design specifications to obtain potential multi-molecule drugs for FTD.
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network (DNN)-based DTI model trained on DTI databases, 
we predicted and screened potential molecular drugs by de-
sign specifications to combine them into a multi-molecule 
drug for treating FTD through targeting these significant bio-
markers.

(I) Constructing the candidate GWGEN of FTD and 
healthy control through big data mining
In this study, the whole-genome microarray dataset with 
accession number GSE140830 was downloaded from the 
Gene Expression Omnibus at the National Center for Bio-
technology Information. This dataset includes data from 234 
blood samples of FTD patients and 248 blood samples of 
healthy control. Each sample contains expression levels of 
proteins, receptors, transcription factors, miRNAs, and lncR-
NAs. These sample data were preprocessed and mined us-
ing big data techniques to construct the candidate GWGEN. 
The candidate GWGEN involves logical and Boolean func-
tions: an interaction between two nodes is recorded as 1, 
and the absence of interaction is recorded as 0. The can-
didate GWGEN is divided into the candidate PPIN and the 
candidate GRN. To construct the candidate PPIN, the fol-
lowing databases were used: MINT, IntAct, BioGRID, BIND, 
and DIP. To construct the candidate GRN, the following da-
tabases were used: CircuitsDB2, HTRIdb, TargetScan, ITFP, 
and TRANSFAC.

After completing the data preprocessing through the 
aforementioned databases, we constructed interactive and 
regulatory models for protein interactions and genetic regu-
lations in the candidate GWGEN. These models included 
interactions among proteins and regulations among genes, 
transcription factors, miRNAs, and lncRNAs. The protein 
interaction and gene regulation models also accounted for 
random noise caused by model residuals and baseline lev-
els.

For the protein-protein interaction (PPI) model, we con-
structed the following PPI equations:
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In the protein-protein interaction model, Pi[n] and Pw[n] 
represent the expression levels of the i-th and w-th proteins 
in the n-th sample, respectively. The parameter σiw  denotes 
the interaction strength between the i-th and w-th proteins. 
τi,PPIN represents the baseline expression level of the i-th 
protein due to unknown interactions caused by histone mod-
ifications, such as phosphorylation and acetylation. φi,PPIN[n] 
signifies the random measurement noise in the expression 
of the i-th protein in the n-th sample. Wi indicates the to-
tal number of interactions with the i-th protein. The letter I 
stands for the total number of proteins, and N represents the 
total number of samples.

For the GRN model, we constructed the following genetic 
regulatory equations:
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In the GRN model, the terms gj[n], tx[n], ly[n], and mz[n] 
represent the expression levels of the j-th gene, x-th tran-
scription factor, y-th lncRNA, and z-th miRNA in the n-th 
sample, respectively. The parameter εjx denotes the regu-
latory strength from the x-th transcription factor on the j-th 
gene. The parameter θjy represents the regulatory strength 
from the y-th lncRNA on the j-th gene. The parameter µjz 
denotes the regulatory strength from the z-th miRNA on the 
j-th gene, with µjz being a positive value due to the negative 
regulatory role of miRNAs on gene expression. The term τj 
signifies the baseline expression level of the j-th gene due to 
unknown regulations caused by histone modifications such 
as phosphorylation and acetylation. The term φj[n] repre-
sents the random noise in the measurement of expression 
of the j-th gene in the n-th sample. The terms Xj, Yj and Zj 
represent the total number of transcription factors, lncRNAs, 
and miRNAs regulating the j-th gene, respectively. The letter 
J stands for the total number of genes, and N represents the 
total number of samples.

For the lncRNA regulatory model, we constructed the fol-
lowing regulatory equations:
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In the lncRNA regulatory model, the terms lk[n], tx[n], ly[n], 
and  represent the expression levels of the k-th lncRNA, x-th 
transcription factor, y-th lncRNA, and z-th miRNA in the n-th 
sample, respectively. The parameter αkx denotes the regu-
latory strength from the x-th transcription factor on the k-th 
lncRNA. The parameter βky represents the regulatory strength 
from the y-th lncRNA on the k-th lncRNA. The parameter γkz 
denotes the regulatory strength from the z-th miRNA on the 
k-th lncRNA, with γkz being a positive value due to the negative 
regulatory role of miRNAs on lncRNA expression. The term τk 
signifies the baseline expression level of the k-th lncRNA due 
to unknown regulations caused by histone modifications such 
as phosphorylation and acetylation. The term φk[n] represents 
the random noise in the measurement of expression of the 
k-th lncRNA in the n-th sample. The terms Xk, Yk and Zk rep-
resent the total number of transcription factors, lncRNAs, and 
miRNAs regulating the k-th lncRNA, respectively. The letter K 
stands for the total number of lncRNAs, and N represents the 
total number of samples.

For the miRNA regulatory model, we constructed the fol-
lowing regulating equations:
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(4)

In the miRNA regulatory model, the terms mh[n], tx[n], ly[n], 
and mz[n] represent the expression levels of the h-th miRNA, 
x-th transcription factor, y-th lncRNA, and z-th miRNA in the 
n-th sample, respectively. The parameter ηhx denotes the 
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regulatory strength from the x-th transcription factor on the 
h-th miRNA. The parameter πhy represents the regulatory 
strength from the y-th lncRNA on the h-th miRNA. The pa-
rameter ξhz denotes the regulatory strength between the z-th 
miRNA and the h-th miRNA, with ξhz being a positive value 
due to the negative regulatory role of miRNAs on miRNA 
expression. The term τh signifies the baseline expression 
level of the h-th miRNA due to unknown regulations caused 
by histone modifications such as phosphorylation and acety-
lation. The term φh[n] represents the random noise in the 
measurement of expression of the h-th miRNA in the n-th 
sample. The terms Xh, Yh and Zh represent the total number 
of transcription factors, lncRNAs, and miRNAs regulating the 
h-th miRNA, respectively. The letter H stands for the total 
number of miRNAs, and N represents the total number of 
samples.

(II) Constructing the real GWGEN for FTD and healthy 
control using system identification and system order 
detection methods
In the previous section, we established four models for the 
candidate GWGEN, including proteins, genes, lncRNAs, 
and miRNAs. However, the candidate GWGEN only records 
whether there is an interaction or regulation between two 
nodes, while the actual expression levels vary from person 
to person. Furthermore, false positives may arise due to data 
mining from large databases. To eliminate false positives in 
the candidate GWGEN, we constructed the real GWGEN for 
FTD and the healthy controlby applying system identification 
and system order detection methods.

To determine the interaction and regulation parameters 
for the protein interaction and genetic regulatory models, 
we rewrote Equations (1) to (4) in linear regression form, as 
shown in Equations (5) to (8).
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In these linear regression equations, the regression vec-
tors ωi[n], ωj[n], ωk[n], and ωh[n] represent the expression 
levels of the i-th protein, j-th gene, k-th lncRNA, and h-th 
miRNA in the n-th sample, respectively. The parameter vec-
tor δi,PPIN denotes the interaction abilities of the i-th protein. 
The parameter vectors δj, δk, δh denote the regulatory abili-
ties and basal levels of the j-th gene, k-th lncRNA, and h-th 
miRNA, respectively. The terms φi,PPIN[n], φj[n], φk[n], and φh 
[n] represent the random noise in the expression of the i-th 
protein, j-th gene, k-th lncRNA, and h-th miRNA in the n-th 
sample.

Equations (5) to (8) can be expanded by considering all 
sample data and rewritten as follows.
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Equations (9) to (12) can be simplified as follows.

, for i 1, 2, , Ii i i iP = Ω ⋅∆ +Ψ =  (13)

, for j 1, 2, , Jj j j jG = Ω ⋅∆ +Ψ =  (14)

, for k 1, 2, , Kk k k kL = Ω ⋅∆ +Ψ =  (15)

, for h 1, 2, , Hh h h hM = Ω ⋅∆ +Ψ =  (16)

Equations (5) to (8) can be further expanded by consider-
ing all samples and rewritten as Equations (9) to (12). To 
avoid overfitting issues in the system identification methods 
for the random models, the number of elements in the pa-
rameters of the PPIN and GRN in Equations (13) to (16) (i.e., 
Δi, Δj, Δk, and Δh cannot exceed half of the dataset’s samples 
(N/2). Therefore, we determine the values of the parameter 
vectors Δi, Δj, Δk, and Δh by solving constrained linear least 
squares parameter estimation methods to ensure the nega-
tive regulatory role of miRNA in Equations (17) to (20).
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Through Equations (17) to (20), we can obtain the optimal 
solutions for the parameter vectors ˆ̂̂̂ , , , andi j k h∆ ∆ ∆ ∆  using 
the least squares method. This part is accomplished with the 
help of the MATLAB Optimization Toolbox. Additionally, the 
constraints in Equations (18) to (20) ensure that the tran-
scriptional regulatory effects of miRNA on genes, lncRNA, 
and miRNA are negative.

After addressing the constrained least square parameter 
estimation problems from the respective genome-wide mi-
croarray data, we obtained the interaction strengths among 
proteins in the candidate GWGEN for FTD and healthy con-
trol, as well as the regulatory abilities for genes, lncRNA, 
and miRNA. However, due to potential false positive errors 
in the data from various databases caused by different ex-
perimental conditions, we used the Akaike Information Cri-
terion (AIC) to eliminate false positives and perform system 
order detection for each protein, gene, lncRNA, and miRNA. 
Therefore, we deleted the false positives from their system 
orders in the candidate GWGEN to obtain the real GWGEN, 
as shown in Figure S1.

Based on the system order detection model, we provided 
four different AIC methods for each protein, gene, lncRNA, 
and miRNA, respectively, as follows:
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The parameters , , , andi j k hΘ Θ Θ Θ     represent the esti-
mated residuals between ˆ̂̂̂ , , , andi j k h∆ ∆ ∆ ∆  and the actual 
expression levels of the i-th protein, j-th gene, k-th lncRNA, 
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and h-th miRNA, respectively.
The AIC method is a statistical measure used for model 

order selection. A lower AIC value indicates a better system 
model order, suggesting that the system model has achieved 
a good fit with fewer parameters. Therefore, we minimize the 
four system order detection models for each protein, gene, 
lncRNA, and miRNA in the candidate GWGEN using the fol-
lowing AIC Equations (25) to (28):

* arg ( )
for i 1,

min
2, , I

i i iW Q AIC W=
= 

(25)

* * * min, , arg , , ( , , )
for j 1, 2, , J

j j j j j j j j jX Y Z X Y Z AIC X Y Z=

= 
(26)

* * * min, , arg , , ( , , )
for k 1, 2, , K

k k k k k k k k kX Y Z X Y Z AIC X Y Z=
= 

(27)

* * * min, , arg , , ( , , )
for h 1, 2, , H

h h h h h h h h hX Y Z X Y Z AIC X Y Z=
= 

(28)

where Wi* represents the actual total number of interactions 
with the i-th protein. Xj*, Yj*, Zj* represent the actual total 
numbers of TFs, lncRNAs, and miRNAs interacting with the 
j-th gene. Xk*, Yk*, Zk* represent the actual total numbers of 
TFs, lncRNAs, and miRNAs interacting with the k-th lncRNA. 
Xh*, Yh*, Zh* represent the actual total numbers of TFs, lncR-
NAs, and miRNAs interacting with the h-th miRNA. Using the 
AIC method, we successfully eliminated false positives in the 
PPI and GRN out of the actual interactions and regulations 
(i.e., their real system order), identifying the real GWGENs of 
FTD and healthy control from their genome-wide microarray 
data, as shown in Tables 1 and 2.

(III) Extraction of the core GWGEN by PNP method
After applying the system identification and system order de-
tection methods, we obtained the real GWGEN for FTD and 
healthy control. However, the real GWGEN is still too com-
plex to study directly. Additionally, to understand the patho-
genic mechanisms of FTD, we need to use KEGG pathways 
for annotation. However, KEGG pathways can currently an-
notate only GWGENs with up to 6,000 nodes. Therefore, we 
use the PNP method to extract the top 6,000 nodes from 
the real GWGEN to form the core GWGEN for both FTD 
and healthy control. The PNP method involves performing 
singular value decomposition (SVD) on the real GWGEN. To 

Table 1.  The number of nodes in candidate GWGEN and real 
GWGEN of FTD and healthy control

Nodes Candidate 
GWGEN

Real GW-
GEN of FTD

Real GWGEN of 
healthy control

Receptor 1,859 1,859 1,859
TF 1,132 1,132 1,132
Protein 11,775 11,771 11,774
miRNA 150 150 150
LncRNA 196 187 189
Total 15,112 15,099 15,104

FTD, Frontotemporal dementia; GWGEN, genome-wide genetic and epigenetic net-
works; TF, transcription factor.

Table 2.  The number of edges in candidate GWGEN and real GWGEN of FTD and healthy control

Nodes Candidate GWGEN Real GWGEN of FTD Real GWGEN of healthy control
PPIs 3,134,515 1,854,695 1,891,770
TF-Receptor 9,728 2,361 2,103
TF-TF 7,900 1,778 1,639
TF-Protein 57,586 14,085 12,594
TF-miRNA 450 82 77
TF-LncRNA 273 124 128
miRNA-Receptor 6,718 1,307 1,214
miRNA-TF 5,763 1,168 1,057
miRNA-Protein 40,346 8,141 7,764
miRNA-miRNA 4 3 4
miRNA-LncRNA 149 44 36
LncRNA-Receptor 163 34 47
LncRNA-TF 161 34 45
LncRNA-Protein 1,299 368 423
LncRNA-miRNA 0 0 0
LncRNA-LncRNA 3 0 1
Total 3,265,058 1,884,224 1,918,902

FTD, Frontotemporal dementia; GWGEN, genome-wide genetic and epigenetic networks; TF, transcription factor.
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begin, we first construct a composite network matrix A for the 
real GWGEN, which includes all the estimated parameters of 
the real GWGEN, as follows:(29)

ln

ln ln ln ln

ln

0 0protein protein

TF gene cRNA gene miRNA gene

TF cRNA cRNA cRNA miRNA cRNA
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a a a
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 
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 
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(29)

where A is divided into several submatrices. The submatrix 
aprotein↔protein represents the system matrix of all protein-pro-
tein interactions, and aTF→gene, alncRNA→gene, and amiRNA→gene 
represent the system matrices of the transcriptional regula-
tory capabilities of TFs, lncRNAs, and miRNAs on all genes, 
respectively. The submatrices aTF→lncRNA, alncRNA→lncRNA, and 
amiRNA→lncRNA represent the system matrices of the transcrip-
tional regulatory capabilities of TFs, lncRNAs, and miRNAs 
on all lncRNAs, respectively. The submatrices aTF→miRNA, 
alncRNA→miRNA, and amiRNA→miRNA represent the system matri-
ces of the transcriptional regulatory capabilities of TFs, lncR-
NAs, and miRNAs on all miRNAs, respectively. The double-
headed arrows indicate that protein-protein interactions are 
bidirectional, while the single-headed arrows indicate that 
transcriptional regulatory capabilities are unidirectional.

The following network matrix A is the expanded form of 
these submatrices:
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Each row in A represents the interaction abilities of each 
protein with other proteins, or the regulatory abilities of each 
gene, lncRNA, and miRNA by TFs, lncRNAs, and miRNAs. 
Next, we perform SVD on the matrix A as follows: 
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Based on the SVD calculation, σr represents the r-th sin-
gular value, and σX*+Y*+Z* represents the last singular value. 
We select the top R singular values, which together account 
for at least 85% of all singular values, i.e., at least 85% of the 
network matrix in (30) from the network energy perspective.
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In Equation (33), Er represents the proportion of the total 
network energy accounted for by the top r singular values. 
Based on this definition, we can determine the top R singu-
lar values that account for at least 85% of the total network 
energy.

We then project each node (i.e., wj of each row in A) of the 
composite network matrix A onto the top R singular vectors 
(i.e., vi, i = 1, …, R):
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where wj represents the j-th row of matrix A (i.e., the j-th node 
of the real GWGEN), vi represents the i-th singular value 
vector of V. proj(vi,wj) denotes the projection value of the j-th 
node of matrix A onto the i-th singular value vector. We then 
calculate the 2-norm projection value P(wj) for each row j of 
matrix A. A higher P(wj) indicates a greater influence of the 
corresponding j-th row (or j-th node of the real GWGEN) on 
the principal network structure.

Using the PNP method, we extract the top 6,000 nodes 
with the highest P(wj) values from the real GWGENs of 
both FTD and healthy control to form the core GWGENs for 
both conditions, as shown in Figure S2. This is the maxi-
mum number of nodes that KEGG pathways can annotate. 
After KEGG annotation, we can identify the core signaling 
pathways for FTD and healthy control. Based on the signal 
transmission paths of the core signaling pathways of FTD, 
along with their downstream target genes and cellular dys-
functions, we investigate the pathogenic mechanisms of 
FTD and select the most suitable genes or proteins as sig-
nificant biomarkers for FTD pathogens and drug targets for 
FTD treatment.

(IV) Designing a multi-molecule drug for the treatment 
of FTD using a DNN-based DTI model and drug design 
specifications
After identifying the significant biomarkers of the pathogenic 
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mechanism of FTD, we use these biomarkers as drug tar-
gets. Next, we train a DNN-based DTI model using DTI data-
bases to predict the interaction probabilities between drugs 
and targets.

First, to train the DNN-based DTI model, we integrated 
multiple drug-target interaction databases, including Bind-
ingDB, ChEMBL, DrugBank, PubChem, and UniProt. These 
databases provide information on the features of drugs and 
their targets, as well as the interactions between molecules. 
Drug features include molecular properties such as struc-
ture, topology, and geometric descriptors. Target features 
are described based on the physicochemical and structural 
properties of proteins and peptides in amino acid sequenc-
es. Using Python’s PyBioMed package, we convert the drug 
and target features into feature vector representations. The 
expression of the converted drug-target feature vectors is 
shown as follows:

- 1 1[ , ] [ , , , , , , , ]drug target p P q Qu D T d d d t t t= =     (35)
where udrug-target represents the drug-target feature vector, 
D and T represent the feature vectors of the drug and the 
target, respectively. The parameters dp and tq represent the 
p-th drug feature and the q-th target feature, respectively. 
P and Q represent the total number of features for the drug 
and the target, respectively.

Before using the drug-target feature vectors as train-
ing data for the DNN-based DTI model, we preprocess the 
feature vectors to avoid potential bias issues in the model. 
Specifically, the data of unverified drug-target interactions 
(negative class) is much larger than that of confirmed drug-
target interactions (positive class). To address this, we 
randomly sample the unverified drug-target interactions to 
equalize the sample size with that of the confirmed interac-
tions. Additionally, because the feature vector variables for 
drugs and targets use different units, we standardize them 
as follows:
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where dp* and tq* represent the standardized p-th drug 
feature and the q-th target feature, respectively. µp and µq 
represent the mean values of the drug features and target 
features, respectively. σp and σq represent the standard 
deviations of the drug features and target features, respec-
tively.

Since the input layer of the DNN network used in the DTI 
model has only 996 nodes, while the standardized feature 
vectors in Equation (35) still exceed this number, we use 
principal component analysis to reduce the dimensionality 
of the drug-target feature vectors. After reducing the dimen-
sionality of the drug-target feature vectors to 996, we use 
75% of the drug-target feature vector data as training data 
and the remaining 25% as testing data. We then use Py-
thon’s TensorFlow and Keras libraries for training and pre-
diction. The architecture of the DNN includes four hidden 
layers, both in the input and output layers, with the hidden 
layers employing the rectified linear unit activation function. 

Dropout layers are added to each hidden layer to avoid over-
fitting. The output layer uses a sigmoid activation function to 
constrain the output between 0 and 1, representing the prob-
ability of interaction between the drug and the target. The 
neural network parameters are set with a learning rate of 
0.001, 100 epochs, and a batch size of 100. Additionally, the 
Adam optimization algorithm is used for training the neural 
network. Since drug-target interaction is a binary classifica-
tion problem (interaction or no interaction), we use binary 
cross-entropy as our loss function:

ˆ̂̂( , ) [ log (1 ) log(1 )]n n n n n n nC p p p p p p= − + − − (38)
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for the n-th sample, the true interaction probability pn and the 
predicted interaction probability ˆnp  can be obtained from the 
above expression. The terms (1−pn) and ˆ(1 )np−  represent 
the true and predicted probabilities of no interaction, respec-
tively. ˆ( , )n n nC p p  represents the loss function for the n-th 
sample. L(w, b) denotes the average loss across all sam-
ples, where w represents the weight vector, b represents the 
bias vector of the DNN, and N represents the total number 
of training samples.

To optimize the weight vector w and bias vector b, we 
combine them into a vector θ and use the backpropagation 
algorithm to compute the gradient and obtain the optimal 
model parameter set θ*. The advantage of the backpropaga-
tion algorithm is that it can efficiently compute high-dimen-
sional vectors and adjust the DTI model parameters to fit the 
drug-target interaction data for each iteration. The gradient 
iteration algorithm is as follows:

w
b

θ
 

=  
 

(40)
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where y represents the y-th iteration of the DNN training pro-
cess, η represents the learning rate, and ∇L(θy−1) represents 
the gradient of the cost function L(θy−1).

To evaluate the performance of our trained DTI model, 
we use the five-fold cross-validation method. We divide the 
training data into five equal parts and, in each iteration, use 
one part as the validation data and the remaining four parts 
as the training data. We average the evaluation results of 
the five validations to obtain the final performance metric of 
the model, as shown in Figures S3 and S4. Additionally, we 
use the area under the curve (AUC) of the receiver operat-
ing characteristic (ROC) curve as another reference metric. 
For binary classification problems, AUC is an important indi-
cator for evaluating the performance of the model visually. 
The larger the AUC, the better the performance of the DNN-
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based DTI model. The AUC equations for the ROC curve are 
given as follows:

TPTPR(True Positive Rate)
TP FN

=
+

(43)

TNTNR(True Negative Rate)
TN FP

=
+

(44)

FPFPR(False Positive Rate) 1 TNR
TN+FP

= = − (45)

FNFNR(False Negative Rate) 1 TPR
TP FN

= = −
+

(46)

where TP represents the number of true positives, where 
the actual value is positive and the predicted result is also 
positive. TN represents the number of true negatives, where 
the actual value is negative and the predicted result is also 
negative. FP represents the number of false positives, where 
the actual value is negative but the predicted result is posi-
tive. FN represents the number of false negatives, where the 
actual value is positive but the predicted result is negative. 
The ROC curve is a graphical representation where the TPR 
is plotted on the vertical axis and the FPR is plotted on the 
horizontal axis, as shown in Figure S5. The AUC of the ROC 
curve indicates the performance of the model. An AUC value 
closer to 1 signifies better performance and a lower prob-
ability of false positives.

After predicting the interaction probabilities between 
drugs and targets, we also need to consider drug design 
specifications to further refine the candidate drugs and se-
lect a suitable multi-molecular drug for treating FTD. We use 
three drug design specifications for screening: regulatory 
capacity, sensitivity, and toxicity, as shown in Table S1. For 
regulatory capacity, we used the LINCS L1000 Level 5 da-
tabase, where a regulatory ability >0 indicates upregulation 
of expression levels, and <0 indicates downregulation. Sen-
sitivity was assessed using the PRISM repurposing dataset, 
representing the compound’s interference with human cells, 
with values closer to 0 indicating lower interference. Toxic-
ity was evaluated using the ADMETlab 2.0 tool, where the 
standardized value LC50 indicates toxicity, with higher val-
ues representing lower toxicity to the human body. Based on 
strong regulatory capacity, high sensitivity, and low toxicity, 
we propose potential molecular drug combinations as candi-

dates for multi-molecular drugs to treat FTD.12

The other detailed methods are provided in the Supple-
mentary materials.

Results
Investigation of core signaling pathways using sys-
tems biology methods and prediction of candidate 
drugs using a trained DNN-based DTI model by DTI 
databases
Following KEGG pathway annotation, the core signaling 
pathways for FTD (as presented in Table 3) and healthy con-
trols (as presented in Table 4) are illustrated in Figure 2. In 
the following subsection, we will analyze cytokines in the mi-
croenvironment, core signaling pathways, their downstream 
target genes, and associated cellular dysfunctions to explore 
the pathogenic mechanisms of FTD. We will then select bio-
markers that play a key role in the pathogenesis of FTD, 
such as TAU, GSK-3β, STAT3, ATG5, WDR41, and RIPK1. 
By applying the DNN-based DTI model, trained on the DTI 
database, we predict potential drugs and select candidate 
molecular drugs based on design specifications to formulate 
a multi-molecule drug aimed at treating FTD by targeting 
these significant biomarkers.

The role of biomarker TAU in the MAPK signaling path-
way
The growth factor (GF) family comprises proteins or peptides 
that control diverse cellular functions, including cell growth, 
differentiation, and survival. They play crucial roles in process-
es like development, tissue repair, immune response, and in-
tercellular communication.13 Receptor tyrosine kinases serve 
as receptors for GFs and are essential for neuronal function 
and development, as shown in Figure 2. For instance, neuro-
trophins and other GFs, which are expressed in very limited 
amounts, play a vital role in regulating neuronal development, 
plasticity, and survival.14 Receptor tyrosine kinases, upon 
receiving signals from GFs, activate downstream signaling 
pathways, such as the GRB2/SOS/Ras signaling pathway. 
The activation of Ras is essential for processes such as cell 
proliferation, differentiation, and apoptosis.15 RafA is a serine 
protein kinase that, upon receiving signals from Ras, can di-
rectly phosphorylate proteins or activate downstream MEK/
ERK pathways to promote protein phosphorylation and regu-
late cell apoptosis.16 ERK, a member of the MAPK family, is 
responsible for phosphorylating the transcription factor ELK1, 

Table 3.  Core signaling pathways of FTD through annotation 
of KEGG pathways

Pathway Gene number p-value
MAPK signaling pathway 148 2.4E-10
WNT signaling pathway 76 1.1E-3
JAK-STAT signaling pathway 72 2.6E-3
PI3K-Akt signaling pathway 135 1.9E-2
Amyotrophic lateral sclerosis 166 1.3E-7
TNF signaling pathway 69 8.8E-9

KEGG, Kyoto Encyclopedia of Genes and Genomes; FTD, Frontotemporal dementia; 
TNF, tumor necrosis factor.

Table 4.  Core signaling pathways of healthy control through 
annotation of KEGG pathways

Pathway Gene number p-value
Cell Cycle 86 1.2E-9
PI3K-Akt signaling pathway 141 7.0E-4
Amyotrophic lateral sclerosis 148 1.4E-4
TNF signaling pathway 56 2.7E-4
Apoptosis 65 4.6E-5
Nucleocytoplasmic transport 60 2.0E-7

TNF, tumor necrosis factor.
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which upregulates c-fos. The ERK/ELK1/c-fos pathway is 
involved in inflammatory responses, cell differentiation, cell 
proliferation, and apoptosis.17 Additionally, the persistent ac-
tivation of ERK induces the phosphorylation of TAU protein. 
Various studies have indicated that TAU phosphorylation 
causes neurofibrillary tangles (NFTs),18 one of the most com-
mon initial symptoms of FTD.

The role of biomarker GSK-3β in the WNT signaling 
pathway
Research has shown that the WNT signaling pathway can lead 
to mutations in progranulin, which are a significant pathogenic 
mechanism in FTD,19 as shown in Figure 2. FZD2, serving as 
a receptor in the WNT signaling pathway, plays a crucial role 
in this process. A decrease in FZD2 levels results in increased 
cell apoptosis, while its upregulation promotes the survival of 
neurons in vitro.20 After receiving the WNT signal, FZD2 ac-
tivates GSK-3β, an important kinase for TAU. As discussed 

in the previous section, the phosphorylation of TAU plays a 
potential pathogenic role in FTD. In addition to causing TAU 
phosphorylation, GSK-3β is essential in the WNT pathway. It 
phosphorylates downstream β-catenin, leading to its degra-
dation through the ubiquitin-proteasome pathway. β-catenin 
serves as an activator of T-cell factor-dependent transcription, 
resulting in the upregulation of various target genes, such as 
c-myc and cyclin D1.21 The expression of c-myc is strongly 
linked to cell cycle progression and can also trigger apoptosis. 
As the cell cycle initiates, cyclin D1 moves through the entire 
cycle,22 regulating cell proliferation and participating in cell dif-
ferentiation.

The role of biomarker STAT3 in the JAK-STAT signaling 
pathway
Interleukin-6 (IL-6) is produced by keratinocytes and white 
blood cells, and since its discovery, the IL-6 signaling path-
way has become a core pathway involved in healthy immune 

Fig. 2. Core signaling pathways of frontotemporal dementia (FTD) and healthy control. The left area of this picture presents the core 
signaling pathways of FTD. The middle area shows the common core signaling pathways between FTD and healthy control. The right area 
presents the core signaling pathways of healthy control. The green and red arrows represent abnormal downregulation and upregulation of 
selected significant biomarkers of FTD, respectively. TF, Transcription Factor; PPI, Protein-Protein Interaction; NFT, Neurofibrillary Tangle.
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regulation and immune dysregulation in many diseases. Re-
search has found that elevated levels of IL-6 can contrib-
ute to granulin precursor mutations, which are also a key 
pathogenic mechanism of FTD.23 IL-6R receives IL-6 and 
activates JAK1 and STAT3, as shown in Figure 2. The JAK/
STAT signaling pathway coordinates adaptive and innate 
immune mechanisms, ultimately limiting neuroinflammatory 
responses and acting as a key contributor to neuroinflamma-
tion in neurodegenerative diseases.24 The downstream ef-
fector miR-21 of STAT3 is a miRNA associated with dysfunc-
tion in neuron-glial cell function. Some studies have shown 
it to be overexpressed in neurons derived from induced 
pluripotent stem cells of FTD patients with the PSEN1ΔE9 
deletion (iNEU-PSEN).25 Additionally, miR-21 is linked to the 
regulation of toxicity caused by amyloid-beta (Aβ) oligom-
ers, which is generally considered one of the pathological 
mechanisms underlying neurodegenerative diseases in 
the brain. Finally, miR-21 activates the transcription factor 
STAT3, which upregulates many target genes, including c-
myc, cyclin D1, and GFAP. The functions of c-myc and cyclin 
D1 were introduced in previous sections. As for GFAP, it is a 
glial fibrillary acidic protein found in astrocytes in the central 
nervous system, where it plays a role in cell differentiation. 
Several studies have indicated that serum GFAP levels are 
significantly higher in FTD patients than in healthy controls.26

The role of biomarker ATG5 in the phosphoinositide 
3-kinase (PI3K)-Akt signaling pathway
Vascular endothelial growth factor (VEGF) is involved in neu-
rodevelopment, angiogenesis, and hematopoiesis, playing an 
essential role in maintaining homeostasis in the adult vascular 
system. A study reported that elevated levels of VEGF can 
cause hippocampal atrophy. Over time, hippocampal atrophy 
can lead to cognitive decline, which may contribute to the de-
velopment of FTD,27 as shown in Figure 2. VEGFR receives 
the VEGF signal and transmits it through GRB2-associated 
binding protein 1 to the downstream PI3K/AKT pathway.28 The 
PI3K and protein kinase B (AKT) signaling pathway play roles 
in many important cellular functions. In the brain, the PI3K/AKT 
signaling pathway serves various functions, including regulat-
ing survival, cell proliferation, growth, differentiation, and other 
complex processes. It also plays a role in oxidative stress and 
autophagy during neuroinflammation.29 The PI3K/AKT path-
way phosphorylates downstream GSK-3β, which, as men-
tioned earlier, contributes to neurofibrillary tangle formation. In 
addition to its impact on GSK-3β, AKT can also phosphorylate 
downstream proteins mTOR and FOXO. Phosphorylation of 
FOXO by AKT inhibits FOXO’s transcriptional function, pro-
moting cell survival and proliferation. The transcription factor 
FOXO targets many genes, including cyclin D1, ATG5, BCL6, 
and FAS. FOXO induces apoptosis by upregulating mitochon-
drial-targeting proteins of the Bcl family.30 ATG5 is a gene in-
volved in the autophagy process and also participates in regu-
lating cell survival and metabolic balance, which is crucial for 
maintaining cellular function. However, FOXO downregulates 
ATG5, leading to changes in the autophagy process. A lack of 
autophagy can impair learning and memory, which is one of 
the important symptoms in patients with FTD.31

The role of biomarker WDR41 in the amyotrophic lateral 
sclerosis signaling pathway
The GGGGCC hexanucleotide repeat expansion in the 

C9orf72 gene is the leading genetic cause of amyotroph-
ic lateral sclerosis and FTD.32 In related studies, we have 
found that C9orf72, along with SMCR8 and WDR41, forms 
a stable complex through their interaction, which is involved 
in the regulation of macroautophagy. The C9orf72-SMCR8-
WDR41 complex interacts with the autophagy initiation com-
plex involving Rab1a and Unc-51-like kinase 1 (ULK1).33 As 
an effector of Rab1a, the C9orf72-SMCR8-WDR41 complex 
regulates the initiation of autophagy by controlling Rab1a-
dependent transport of the ULK1 autophagy initiation com-
plex to phagophores. Within the C9orf72-SMCR8-WDR41 
complex, WDR41 is a prominent C9orf72-interacting protein, 
playing a significant role in supporting the regulatory asso-
ciation of C9orf72 with lysosomes. In the complex, SMCR8 
acts as an upstream component of ULK1. The interaction be-
tween ULK1 and mTOR is essential for autophagic function. 
After the fusion of the ULK1 autophagosome with the lyso-
some, mTOR can be reactivated. The activation of mTOR 
subsequently reduces ULK1 kinase activity by phosphorylat-
ing it at the Ser757 site, thereby suppressing autophagy.34 
The phosphorylation of ULK1 also leads to the phosphoryla-
tion of its downstream protein Atg2. Atg2, as a key protein in 
membrane expansion during the ULK1-initiated autophagy 
process, ensures the formation of autophagosomes.35 By 
binding to WIPI proteins, Atg2 is localized and stabilized on 
the autophagosome membrane, promoting the transport of 
membrane lipids and membrane expansion.36 Another role 
of WIPI is to activate TECPR1, which transmits signals to 
the transcription factor FOXO to downregulate ATG5. This 
downregulation results in the impairment of autophagic func-
tion, contributing to neurodegenerative diseases.

The role of biomarker RIPK1 in the tumor necrosis fac-
tor (TNF) signaling pathway.
The primary pro-inflammatory cytokine TNF has been dem-
onstrated to regulate various signaling pathways, leading to 
a broad range of downstream effects.37 These effects en-
compass the regulation of cell proliferation, differentiation, 
apoptosis, immune response, and the induction of inflam-
mation. Due to such extensive cellular effects and complex 
signaling pathways, TNF is also associated with many age-
related disease states. Upon receiving the TNF signal, the 
receptor TNFR1 begins to activate downstream pathways.37 
The RIPK1 is recognized as a key regulator of TNFR1 signal 
transduction. RIPK1 controls cell fate decisions, promoting 
either cell survival or death. The downstream FADD/CASP 
signaling pathway is responsible for regulating extrinsic apo-
ptosis and necroptosis.38 Caspase-3 (CASP3) in the CASP 
family can cleave TAU protein, leading to its phosphorylation 
and the formation of NFTs.39 In addition to regulating cellular 
apoptosis, RIPK1 is also involved in mediating inflammatory 
responses in neurodegenerative diseases. The downstream 
TAK1/MKK/p38 signaling pathway plays an essential role in 
inflammation, as activation of p38 induces the expression 
of inflammatory mediators involved in tissue remodeling and 
oxidative regulation.40 Downstream of p38, mitogen- and 
stress-activated protein kinases 1 and 2 act as epigenetic 
modifiers that activate genes related to cell proliferation, in-
flammation, and neuronal function, as well as phosphoryl-
ate the transcription factor CREB.41 CREB has a vital role in 
the nervous system, participating in the formation of learning 
and memory, and is responsible for upregulating target gene 
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IL-6. IL-6 is important for neuronal development, differentia-
tion, and regeneration; therefore, its dysregulation is associ-
ated with neuroinflammation to some degree.42

The core signaling pathways of healthy control
In the healthy control tissues, we observed that the gluca-
gon signaling pathway plays a crucial role. However, recent 
studies indicate that, besides its role in glucose metabolism, 
the glucagon signaling pathway also protects the nervous 
system by regulating neuronal metabolism, antioxidant 
stress response, and inflammation.43 Upon binding of pan-
creatic glucagon and its receptor in the microenvironment, 
the GNAS/ADCY2/PKA/SMEK signaling pathway is acti-
vated, as shown in Figure 2. The actions of these kinases 
are also linked to metabolic regulation. Overexpression of 
SMEK, the downstream component, leads to phosphoryla-
tion of CRTC2.44 Phosphorylated CRTC2 then interacts with 
CREB-binding protein, regulating the expression of the tar-
get gene G6PC3. The main function of G6PC3 is to main-
tain energy homeostasis and mitochondrial function. In this 
study, we observed that the expression level of the G6PC3 
gene is significantly elevated in normal tissues compared to 
those in FTD patients, which may explain the metabolic ab-
normalities in FTD patients due to G6PC3 deficiency.45

Predicting potential drugs for treating FTD using bio-
markers as drug targets and leveraging a deep neural 
network-based drug-target interaction model
After investigating the core signaling pathways involved in 
the pathogenic mechanism of FTD and identifying signifi-
cant biomarkers TAU, GSK-3β, STAT3, ATG5, WDR41, and 
RIPK1 as drug targets, we began studying the interactions 
between these biomarkers and drugs, considering drug de-
sign specifications such as regulatory ability, sensitivity, and 
toxicity. Based on these significant drug properties, we se-
lected potential drugs expected to reverse the expression 
levels of these biomarkers without causing excessive side 
effects. To study the interactions between biomarkers and 
drugs, we developed a DNN-DTI model, as shown in Fig-
ure 3. This model was pre-trained using the DTI database, 
enabling it to effectively predict the interaction probabilities 
between biomarkers and candidate drugs after DTI data 
training via the Adam learning algorithm.

However, in the DTI database, there were 80,291 con-
firmed drug-target interactions but 100,024 unconfirmed in-
teractions. To address the prediction issues caused by the 
imbalanced class distribution, we randomly selected 80,291 
unconfirmed drug-target interactions for prediction. Another 
potential issue arises from the need to observe multiple 
variables in drug-target interaction feature data, with many 
variables possibly correlated, increasing the complexity of 
the analysis. Therefore, we standardized the data and used 
principal component analysis to reduce the dimensionality of 
the feature vectors to 996, in order to meet the input require-
ments of the DNN for computational convenience. These 
996 nodes were used as the input layer, with the DNN-based 
DTI model comprising four hidden layers with 512, 256, 128, 
and 64 neurons, respectively. The hidden layers employed 
rectified linear unit activation functions, and dropout layers 
were added to each hidden layer to avoid overfitting. The 
output layer consisted of a single neuron using a sigmoid 
activation function to constrain the output between 0 and 

1, representing the interaction probability between the drug 
and the drug target.

Our DNN-based DTI model was evaluated using 5-fold 
cross-validation to assess its performance. The loss and 
accuracy curves during the training process are shown in 
Figures S3 and S4 of the supplementary materials, respec-
tively, and the results of the five-fold cross-validation are 
presented in Table S2 of the supplementary materials. The 
average test accuracy was 93.2%, with a standard deviation 
of 0.118%. Additionally, we used ROC curves as a reference 
metric, where the AUC of the ROC ranges between 0 and 1, 
with higher values indicating better DTI model performance. 
Ultimately, our DNN-based DTI model achieved an AUC of 
0.981, as shown in Figure S5 of the supplementary materi-
als, outperforming a random prediction model (AUC = 0.5).

However, we aimed to design molecular drugs that not 
only effectively alleviate symptoms of FTD but also minimize 
adverse reactions. Generally, potent molecular drugs may 
be more irritating to the human body. Therefore, balancing 
drug efficacy and side effects is our next focus. We used 
three drug design specifications for screening the predicted 
molecular drugs: Regulatory capacity, sensitivity, and toxic-
ity, referring to the LINCS L1000 Level 5, PRISM, and AD-
METlab 2.0 databases. Based on strong regulatory capacity, 
high sensitivity, and low toxicity, we selected several poten-
tial molecular drugs for each biomarker of FTD, as shown in 
Table 5. Additionally, since Iodophenpropit, TTNPB, Probu-
col, and Clobenpropit serve as potential molecular drugs for 
these significant biomarkers, we combined these four mo-
lecular drugs to propose potential multi-molecular drugs for 
treating FTD.

Discussion
Iodophenpropit and Clobenpropit are both antagonists of H3 
receptors commonly used to study the role of histamine in 
the nervous system. The histamine H3 receptor is a biogenic 
amine that plays a significant role in central nervous system 
activities, including learning and memory. Literature data 
indicate that elevated levels of H3 receptor expression can 
lead to cognitive impairment.46 Given preclinical evidence 
that blocking the H3 receptor reduces impulsivity, improves 
attention, and enhances learning and memory, H3 receptor 
antagonists have been clinically used to treat various cogni-
tive disorders. Iodophenpropit, as one of these H3 receptor 
antagonists, was the first compound successfully developed 
for labeling H3 receptors in rat brain membranes in previous 
studies.46 In another study, Clobenpropit was found to im-
prove memory impairment induced by lipopolysaccharides. 
Lipopolysaccharide triggers neuroinflammation by modulat-
ing cyclooxygenase activity and cytokine levels in the brain, 
leading to memory deficits.47

TTNPB is a synthetic analog of all-trans retinoic acid, 
belonging to the vitamin A derivatives (retinoid) family. 
Retinoids interact with retinoic acid receptors and retinoid 
X receptors, significantly impacting physiological and patho-
logical signaling pathways in the brain. Impaired retinoic acid 
signaling is a crucial factor leading to neurodegenerative 
diseases.48 Recent studies have shown that deprivation of 
retinoic acid in mice results in severe deficits in spatial learn-
ing and memory. Additionally, a critical pathological hallmark 
of retinoids is the production and deposition of Aβ, the forma-
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Fig. 3. The flowchart of training a deep neural network (DNN)-based drug-target interaction (DTI) model and designing a multi-
molecule drug for the treatment of frontotemporal dementia (FTD). First, we preprocess the original data through drug-target interaction 
databases to generate the drug-target feature vectors. Seventy-five percent of the drug-target feature vector data was used as training data, 
and the remaining 25% was used for testing. After training the DTI model, we obtain the score for each molecular drug (i.e., the higher the 
score, the higher the probability of interaction with biomarkers). We then select candidate molecular drugs according to their scores. Finally, 
we use three drug design specifications to predict the most promising molecular drugs and combine them into a multi-molecule drug for 
treating FTD.
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tion and phosphorylation of NFT, and the inflammation and 
autoimmune response.49 These pathologies are also signifi-
cant mechanisms in the etiology of FTD. Currently, TTNPB 
has been identified in clinical settings as a potent retinoid 
receptor agonist with potential for treating neurodegenera-
tive diseases due to its metabolic resistance and high affinity 
for retinoic acid receptors.48

Probucol is a historically established cholesterol-low-
ering drug, but recent studies have explored its potential 
as a treatment for dementia. This interest arises because 
Probucol has been shown to inhibit Aβ secretion in mouse 
models while maintaining blood-brain barrier function, sup-
pressing neurovascular inflammation, and directly influenc-
ing neuroprotection and adaptability.50 In mouse models with 
ischemia-induced blood-brain barrier dysfunction, Probucol 
preserved the proper localization of tight junction proteins 
in endothelial cells by attenuating sphingosine-1-phosphate 
signaling and inhibiting the expression of STAT3, thereby re-
ducing the leakage of small molecules into the brain paren-
chyma. Furthermore, in in vitro models of brain endothelial 
dysfunction, Probucol was found to inhibit the expression of 
CASP3.50 The cleavage of CASP3 is one of the causes of 
TAU phosphorylation, and inhibiting CASP3 can reduce the 
formation of NFT caused by TAU phosphorylation. Taken 
together, these findings suggest that Probucol may provide 
therapeutic benefits for FTD by effectively enhancing neu-
ronal survival and plasticity, making it a promising candidate 
for FTD treatment.51

In summary, there is currently no drug on the market that 
can completely cure FTD. The four molecular drugs we have 
screened have not yet been practically applied to treat FTD 
in humans. However, based on our systematic research and 
analysis, by understanding the mechanisms of action of 
these molecular drugs, effectively regulating the expression 
of biomarkers, and improving the pathogenic mechanisms of 
FTD, we have ultimately selected these four molecular drugs 
as potential treatments for FTD. Compared to traditional 
drugs, these small-molecule compounds we have chosen 
as a molecular drug combination offer several advantages. 
Firstly, development costs: Traditional drugs and multi-mo-
lecular drugs are associated with high costs, time consump-
tion, and low efficiency. Secondly, multi-target action: Multi-
molecular drugs can act on multiple targets simultaneously, 
thereby increasing efficacy, especially for complex diseases 
like neurodegenerative disorders.

Conclusions
In this study, we explored the pathogenic mechanism of 

FTD from a systems biology perspective and designed a 
multi-molecule drug for its treatment. To achieve this goal, 
we began by constructing candidate GWGENs for FTD and 
healthy control through big data mining, including candidate 
PPINs and candidate GRNs. The next step was to identify 
the true GWGENs for FTD and healthy control using their 
microarray data and system identification methods. Sub-
sequently, we applied the PNP method to extract the core 
GWGENs for both FTD and healthy control. By annotating 
these core GWGENs with KEGG pathways, we identified the 
core signaling pathways involved in FTD and healthy control 
and investigated the pathogenetic mechanisms to pinpoint 
significant biomarkers for FTD.

In the core pathogenic signaling pathways of FTD, we 
identified significant biomarkers, including TAU, GSK-3β, 
STAT3, ATG5, WDR41, and RIPK1, as potential drug tar-
gets. Based on the prediction of candidate molecular drugs 
from the DNN-based DTI model, we selected Iodophenpro-
pit, TTNPB, Probucol, and Clobenpropit as a multi-molecule 
drug combination targeting multiple biomarkers to restore 
the pathogenic cellular functions of FTD to normal levels. 
With further clinical and experimental validation, we hope 
that the proposed multi-molecule drug will improve the cel-
lular functions in FTD patients. The potential therapeutic ef-
ficacy of these molecular drug combinations is expected to 
offer new treatment options for FTD patients.
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