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Introduction
Colorectal cancer (CRC) is the most prevalent gastrointesti-
nal cancer, ranking as the third leading cause of cancer-as-
sociated mortality in both genders.1 Progress in the field has 
resulted in significant improvements in survival for patients 
with metastatic CRC (mCRC) in the past two decades, at-
tributed to progress in therapeutic management. The utiliza-
tion of different strategies, encompassing the incorporation 
of novel drugs in conjunction with fluoropyrimidine chemo-
therapy and the identification of distinct genetic alterations 
through targeted therapeutic interventions, has yielded 
substantial advancements in the prognosis of patients with 
mCRC.2 The mean overall survival (OS) for patients with 
mCRC is approximately 30 months, indicating a substan-
tial requirement for enhanced management, particularly 
in cases of proficient mismatch repair/microsatellite stable 
(pMMR/MSS) mCRC. A limited number of studies have indi-
cated the decreased effectiveness of immune checkpoint in-
hibitors in pMMR/MSS mCRC,3,4 a tumor type distinguished 
by decreased immunological activity. Over the course of the 
previous decade, the utilization of immune checkpoint inhibi-
tors has exerted a contemporary influence on the manage-
ment of different types of solid tumors, leading to substantial 
alterations in their treatment strategies.5 The utilization of 
checkpoint blockade has yielded notable advancements in 

the treatment of CRC characterized by deficient mismatch 
repair/high microsatellite instability (dMMR/MSI-H), demon-
strating long-lasting and profound therapeutic outcomes.6 
The elevated rate of mutation observed in dMMR/MSI-H 
CRC leads to a substantial presence of neoantigens. CRC 
with pMMR/MSS manifests chromosomal instability, result-
ing in genomic structural aberrations, which are accompa-
nied by a decreased tumor mutation burden and neo-antigen 
generation.7 This theory offers a partial explanation for the 
different activities of immune checkpoint inhibitors observed 
in these two subsets of CRC patients. However, it is worth 
noting that numerous molecular factors may contribute to 
the development of immunotherapy resistance in MSS CRC. 
This review delves into biological obstacles that can be over-
come to boost the ability to combat tumors. Furthermore, we 
present an analysis of potential treatment options for pa-
tients with pMMR/MSS mCRC.

Methods
We searched PubMed (www.ncbi.nlm.nih.gov/pubmed) for 
full-text articles from 2017 to May 31, 2023, using the key-
words “immunotherapy”, “colorectal”, “cancer”, “PD-L1”, and 
“MSS”. The full-text articles found were carefully examined. 
In addition, all abstracts presented at international confer-
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ences between January 2020 and October 2023 were ex-
amined.

Immunotherapy in pMMR/MSS mCRC
The CRC with pMMR/MSS is characterized by chromosomal 
stability and is correlated with a lower tumor mutation burden 
and reduced neoantigen generation.7–9 The adaptive im-
mune system regulates tumor-specific immune activation by 
utilizing neoantigens associated with mutations. Tumor-infil-
trating lymphocytes are abundant in MSI-H CRCs, as well 
as in immune-reactive tumors such as melanoma.6,10 How-
ever, patients with pMMR/MSS mCRC exhibit infrequent 
tumor-infiltrating lymphocytes due to a lower occurrence of 
neoantigens associated with mutations and a tumor micro-
environment that hinders the infiltration of lymphocytes. The 
tumor microenvironment in pMMR/MSS differs from that in 
dMMR/MSI-H, thereby impacting the response to immune 
checkpoint inhibitor therapy. The tumor microenvironment in 
pMMR/MSS CRC exhibits increased populations of tumor-
associated macrophages,11 which has been associated with 
a dismal prognosis in most scientific investigations, although 
contradictory studies suggest a potential beneficial impact 
on survival outcomes.12,13 Although there is no consensus 
regarding their predictive value, multiple studies have shown 
that they have an adverse effect on the adaptive immune 
response, particularly in the context of “immune exclusion”.14 
Studies have shown that increased activation of β-catenin 
in melanoma cells results in a reduction of the cluster of dif-
ferentiation 8 + (CD 8+) and CD103+ dendritic cell popula-
tions, leading to the block of T-cell recruitment to the tumor 
microenvironment. This phenomenon is referred to as T-cell 
exclusion.

Beta-catenin is responsible for the activation of the Wnt 
signaling pathway in CRC. The frequency of antigen-pre-
senting cell (APC) protein mutations in MSS CRCs exceeds 
70%.15–18 Alterations in the APC gene have been observed in 
approximately 20% of patients with dMMR/MSI-H CRC, ac-
counting for the disparate underlying mechanisms of onco-
genesis in the “immune hot” and “immune cold” subgroups. 
Elevated expression of the wingless-type MMTV integration 
site family (Wnt/b-catenin) signaling pathway in CRC is cor-
related with diminished T-cell infiltration in the tumor micro-
environment, thus elucidating the limited efficacy of immune 
checkpoint inhibitors in the context of CRC. According to a 
study documented in the Cancer Genome Atlas database,19 
the incidence of mutations in the β-catenin pathway was 
found to be three times higher in non-T-cell-inflamed cancers 
than in T-cell-inflamed cancers. Additionally, the amplification 
of Wnt/β-catenin signaling in CRC can be observed through 
the occurrence of other alterations, including RNF43, Axin 
1/2 mutations, and R-spondin gene fusions.20–22 While APC 
alterations are more infrequent than alterations in other sys-
tems, it is worth noting that the preceding modifications also 
contribute to the immune regulation driven by the Wnt path-
way.19 The Wnt/β-catenin signaling pathway has the potential 
to impede the effectiveness of immunotherapy by facilitating 
immune exclusion. The progression of CRC is associated 
with transforming growth factor-β. (TGF-β).23 The mesen-
chymal nature of TGF-β-driven CRC is identified through its 
genomic profile, specifically its categorization in the consen-
sus molecular subgroup 4. Consequently, this classification 
triggers the activation of the epithelial mesenchymal transi-

tion.24 The TGF-β signaling pathway assumes a pivotal role 
in governing immune regulation within the tumor microenvi-
ronment. Increased levels of TGF-β have been observed to 
result in a heightened presence of regulatory T cells (T-regs) 
within tumors, subsequently diminishing the efficacy of the 
antitumor immune response. Additionally, the data indicate 
that the TGF-β pathway diminishes the efficacy of natural 
killer cells, which possess the ability to identify and target 
cancerous cells.25 The expression of CD41 and CD81 in T 
cells is reduced in liver metastases of CRC, suggesting sig-
nificant activation of TGF-β.26 Liver metastasis in CRC and 
other tumors may exhibit resistance to immunotherapy, po-
tentially owing to elevated TGF-β signaling.27

Suppression of the TGF-β pathway through the use of a 
small-molecule inhibitor demonstrates a notable decrease in 
liver metastasis and immune evasion in preclinical models 
of CRC.28,29 TGF-β impedes the effectiveness of therapies 
involving immune checkpoint inhibitors, thereby functioning 
as an obstacle to the immune response against tumors. Rat 
sarcoma (RAS) and B-Rapidly Accelerated Fibrosarcoma 
(BRAF) mutations are commonly observed in CRC, result-
ing in alterations within the mitogen-activated protein kinase 
(MAPK) pathway. The MAPK pathway has been linked to the 
initiation and progression of several types of malignant tu-
mors, such as CRC, and is considered an oncogenic driver. 
Activation of the MAPK signaling pathway not only facilitates 
carcinogenesis but also plays a crucial role in orchestrating 
the heterogeneity of the tumor microenvironment. The pres-
ence of the BRAF V600E mutation results in reduced T-cell 
infiltration and hinders the process of neoantigen presenta-
tion in cancer cells.30,31 The inhibition of BRAF signaling re-
sults in a reduction in suppressor cells, an increase in the 
recruitment of lymphocytes, enhancement of neoantigen 
presentation, and improvement in the immune response. 
Mutations in the KRAS gene have the potential to impede 
the process of interferon-based antigen presentation and 
the subsequent recruitment of T cells, thereby impacting 
the evasion tactics employed by the immune system.32–36 A 
study conducted on a mouse model revealed that the onco-
genes BRAF and MYC played a role in facilitating immune 
evasion, which is dependent on Ras. Interestingly, when the 
activity of BRAF was restored, the immune response against 
the tumor was restored.35 The RAS oncogene contributes 
to the stabilization of programmed cell death–1 (PD-1) 
RNA, leading to sustained PD-1 expression and the ability 
to evade the immune response.37 Inhibition of the KRAS 
12C mutation promotes the infiltration of T cells and exhibits 
synergistic effects when combined with immune checkpoint 
inhibitors.38 There is a growing body of evidence indicating 
that the MAPK pathway might have implications for immune 
exclusion, functioning as an obstacle to achieving favorable 
outcomes through immunotherapy.

Overcome resistance
Multiple attempts are required to overcome resistance and 
achieve a significant response to immune checkpoint inhibi-
tors. Single-agent immune checkpoint inhibitors exhibit lim-
ited clinical efficacy. Pembrolizumab did not exhibit clinical 
efficacy or an overall response rate in patients with pMMR/
MSS CRC.39 The investigation of efficacy in treating solid 
tumors with nivolumab included a cohort of patients diag-
nosed with CRC, from which a single individual exhibited 
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a complete response (1/14; 7.2%).40 There was a lack of 
objective response in the dose expansion cohort of this 
study, which consisted of 19 patients diagnosed with pMMR/
MSS.41 The combination of nivolumab and ipilimumab 
was evaluated in the CheckMate-142 trial, a phase II trial 
conducted in patients, including mCRC dMMR/MSI-H and 
pMMR/MSS. Patients with pMMR/MSS CRC exhibited unfa-
vorable outcomes, as evidenced by the median progression-
free survival (PFS) 1.4 months, without efficacy signal of the 
combination of CTLA-4 and PD-1 blockade.42 The Cancer 
Trial Group CO.26 study investigated the combined activity 
of durvalumab with tremelimumab.43 Participants enrolled in 
this phase II trial were assigned to receive either best sup-
portive care (BSC) or the durvalumab/tremelimumab combi-
nation. The experimental arm exhibited a median PFS of 1.8 
months, whereas the control arm had a median PFS of 1.9 
months. The investigator discovered that although there was 
a slight increase in OS (6.6 vs 4.1 months p = 0.07), there 
were no differences in PFS when compared to best support-
ive care (BSC). These findings support the hypothesis that 
concurrent blockade of PD-1 and cytotoxic T-lymphocyte as-
sociated protein 4 (CTLA-4) fails to induce a substantial im-
mune response in mCRC pMMR/MSS patients. A new study 
is evaluating the effectiveness of combining an anti-lympho-
cyte-activating gene-3 (LAG-3), a relatlimab, with nivolumab 
in mCRC pMMR/MSS patients, as documented in the clinical 
trial NCT03642067. Efforts must be made to develop drugs 
that improve the recruitment of immune cells in the tumor 
microenvironment.

Targeted therapy and immunotherapy in pMMR/MSS 
mCRC
The combination of targeted therapy and immunotherapy 
holds the potential to improve the response in pMMR/MSS 
mCRC patients. Enhancing immune infiltration in CRC con-
stitutes a crucial factor in enhancing the immune response. 
The combination of tyrosine kinase inhibitors and immune 
checkpoint inhibitors has been the subject of research based 
on data indicating that tyrosine kinase inhibitors, primar-
ily angiogenesis inhibitors, can suppress tumor-associated 
macrophages (TAMs) and enhance T-cell infiltration.44,45 The 
REGONIVO study, a clinical trial, assessed the efficacy of 
combining regorafenib and nivolumab in Asian patients with 
advanced CRC who had previously undergone unsuccessful 
systemic chemotherapy.46 Participants enrolled in this phase 
Ib clinical trial were administered a combination of regorafenib 
(dosage of 80 mg, in the expansion cohort) in conjunction 
with nivolumab (intravenous dosage of 3 mg/kg, administered 
every two weeks). A total of twenty-five patients with pMMR/
MMS were enrolled, with only one patient with MSI-H, refrac-
tory disease, and at least two lines of chemotherapy. The 
investigators reported an objective response rate (ORR) of 
33% among patients with pMMR/MSS disease. The median 
progression-free survival was observed to be 7.9 months, 
while the median OS was not reached. The one-year PFS 
rate of 41.8% implies prolonged disease control. A post hoc 
analysis revealed that, in patients presenting liver metastasis, 
8.3% exhibited an objective response, whereas patients with 
lung metastasis demonstrated a response rate of 63.6%.46 
Subsequently, a trial was conducted in the United States to 
evaluate the efficacy of the identical combination in patients 
with pMMR/MSS mCRC.47 The upper limit of regorafenib was 

identified as 80 mg, whereas patients also received 240 mg 
of nivolumab every 2 weeks. It was found that fifty-two pa-
tients included in this study, the ORR was 8%, and the median 
PFS was 4.3 months. The primary endpoint was not reached, 
in contrast to the results observed in the Asian REGONIVO 
trial. In a clinical investigation involving the combined usage 
of regorafenib and nivolumab in chemoresistant MSS CRC, it 
was observed that patients with lung metastasis exhibited a 
moderate level of response. However, no response was de-
tected in patients with liver metastasis. The ORR was found 
to be 21%.48

Pembrolizumab and regorafenib were studied in combina-
tion in a phase I/II clinical trial involving patients with pMMR/
MSS CRC with disease progression following two or three 
rounds of systemic chemotherapy.49 The study involved a 
cohort of seventy-three patients, among whom no objective 
responses were observed. The median PFS was 2 months, 
while the median OS was 10.9 months. The prevalence of 
liver metastasis was 78%, exceeding the rate observed in 
the REGONIVO study (52%), which was characterized by a 
higher occurrence of lung metastasis (64%). A phase II trial 
combining regorafenib with avelumab did not obtain any ob-
jective response. Among those with the best response, sta-
ble disease was observed in 23 patients, which accounted 
for 53.5% of the total.50

The median PFS recorded a value of 3.6 months. Ad-
verse prognostic implications were observed in cases with 
high tumor-associated macrophage counts, while improved 
outcomes were associated with increased CD81+ T-cell 
infiltration.50 The clinical utility of combination approaches 
involving tyrosine kinase inhibitors and immune checkpoint 
inhibitors is restricted in unselected patients with MSS CRC, 
despite ongoing investigations utilizing lenvatinib and cabo-
zantinib.51,52 LEAP-017 is an ongoing phase II study evalu-
ating lenvatinib and pembrolizumab therapy in patients with 
pMMR/MSS CRC.

It remains unclear whether the signals observed in pa-
tients with lung metastasis are attributable to disease biology 
or an immune response.

The presence of the BRAF V600E mutation in patients 
with CRC is associated with an aggressive tumor profile, 
accelerated disease advancement, and unfavorable clinical 
outcomes. The BEACON trial revealed the transformative 
impact on medical practice through the combined adminis-
tration of encorafenib and cetuximab.51–53 Ongoing investi-
gations are currently focused on the synergistic utilization 
of encorafenib, cetuximab, and nivolumab, aiming to exploit 
the immunomodulatory properties associated with BRAF in-
hibition. This approach is deemed essential for countering 
the immune evasion mechanisms associated with the BRAF 
V600E mutation. A recent clinical trial examined the efficacy 
of this approach in a cohort of 26 patients diagnosed with 
treatment-resistant BRAF V600E-mutant MSS CRC. The 
preliminary results of the examination employing nivolumab, 
encorafenib, and cetuximab demonstrated a 45% rate of 
objectively observed positive responses and a median du-
ration of 7.3 months without progression.54 The outcomes 
observed in this study were substantially better than those of 
the historical control provided by the BEACON study, which 
reported an ORR of 20% and a median PFS of 4.2 months 
with the doublet regimen. The efficacy of the combination 
of encorafenib, cetuximab, and nivolumab will be evaluated 
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inthe SWOG-2107 clinical trial to confirm its effectiveness. 
There was no enhancement in OS when utilizing the combi-
nation of atezolizumab and cobimetinib in mCRC pMMR/MSS 
patients.55 The efficacy of EGFR blockade in combination with 
immune checkpoint inhibitor therapy has been examined in 
patients with RAS/RAF wild-type disease. A study was con-
ducted on patients with mCRC harboring wild-type RAS/RAF 
to evaluate the efficacy of combination therapy involving pani-
tumumab, nivolumab, and ipilimumab.56 The triplet regimen 
exhibited an ORR of 35% and a median PFS of 5.7 months, 
surpassing the efficacy of panitumumab monotherapy.57 By 
directing therapeutic focus toward EGFR signaling, particu-
larly the MAPK pathway, a synergistic effect can be achieved 
in combination with immune checkpoint inhibitors.

Chemotherapy and immunotherapy in pMMR/MSS 
mCRC
The combination of chemotherapy and immunotherapy to 
increase the response in pMMR/MSS mCRC involves the 
combination of cytotoxic agents and immune checkpoint in-
hibitors, with the specific aim of eliminating cancerous cells 
and inducing the release of neoantigens to stimulate T-cell 
activation. This strategy has demonstrated efficacy across di-
verse types of solid malignancies, including but not limited to 
lung carcinoma, gastric cancer, and most recently, cholangio-
carcinoma.58 The AtezoTRIBE study conducted an analysis 
to assess the effects of incorporating atezolizumab into the 
combination therapy of FOLFOXIRI with bevacizumab in pa-
tients with mCRC regardless of MMR status. The preliminary 
results of the study showed that the primary outcome of PFS 
was successfully achieved in the entire patient cohort. Nev-
ertheless, the advantage observed in individuals with MSS 
CRC was only moderately increased, as evidenced by a rise 
in PFS from 11.4 months to 12.9 months (hazard ratio [HR], 
0.78; 80% confidence interval [CI], 0.62–0.97; p = 0.071). No 
notable difference in the ORR was observed between the 
two groups (59% compared to 64% response rate, p value = 
0.412), highlighting the restricted effectiveness of chemoim-
munotherapy in individuals diagnosed with MSS CRC. The 
efficacy and safety of capecitabine and bevacizumab with or 
without atezolizumab were examined in the BACCI trial, which 
compared the outcomes of triple therapy versus doublet ther-
apy in patients with mCRC MMR/MSS or dMMR/MSI-H.59,60

In this phase II clinical trial, patients were administered 
either a three-drug combination regimen incorporating at-
ezolizumab or a two-drug combination regimen incorporating 
a placebo. The study successfully met the primary endpoint 
of median PFS, indicating marginal enhancement (4.4 vs. 
3.6 months, HR = 0.75; 95% CI = 0.52–1.09; p = 0.07). The 
median PFS for patients with pMMR/MSS disease increased 
modestly, with a duration of 5.3 vs 3.3 months (HR, 0.66; 95% 
CI, 0.44–0.99). The administration of the triplet regimen did 
not yield a significant advantage in terms of the median PFS 
among patients diagnosed with MSS mCRC (sensitivity anal-
ysis for median PFS: HR, 0.82; 95% CI, 0.56–1.20).60 The effi-
cacy of the FOLFOX, bevacizumab, and nivolumab combina-
tion was evaluated in the CheckMate-9X8 trial, which included 
treatment-naive patients diagnosed with mCRC, regardless 
of their RAS/RAF and microsatellite instability status.61 The 
primary endpoint was the median PFS, which was the same 
(12.9 months) in the experimental arm and the control arm. Af-
ter 12 months, a discernible divergence became apparent in 

the curves, leading to an increased rate of PFS at 18 months 
(28% in comparison to 9%). Currently, there is no established 
biomarker capable of identifying patients who are responsive 
to immunotherapy. The cohort treated with nivolumab exhib-
ited a significantly elevated ORR of 60%, compared to the 
46% response rate in the control group. The combination of 
immune checkpoint inhibitors with chemotherapy has limited 
efficacy and has not yet been used to modify established 
treatment methods. Additional investigations are required to 
understand the mechanisms by which immune evasion oc-
curs within the tumor microenvironment of CRC.

Conclusions
Treatments for MSS CRC using immunotherapy, especial-
ly immune checkpoint inhibitors, are limited. However, the 
progress achieved in studies combining targeted TkIs and 
chemotherapy has paved the way for encouraging results. 
These treatments can help achieve clinical goals and shift 
cold tumors to hot responsive tumors. A deeper understand-
ing of the foundation of diverse resistance mechanisms is 
needed to generate new possibilities with diverse routes to 
advance immunotherapy in CRC patients.

The SWOG-2107 trial will provide insights into the clini-
cal importance of the potential synergistic effects of dual 
BRAF inhibition and immune checkpoint-positive inhibitors, 
opening therapeutic options and alternative opportunities in 
MAPK-targeted approaches.

Strategies targeting the Wnt and TGF-β pathways are cur-
rently under investigation. The aberrant activation of the Wnt 
signaling pathway in CRCs has a significant impact on estab-
lishing a protected environment to exclude the immune sys-
tem from cancer cells with diminished neoantigen expression.

It may be crucial to know which CRC subsets benefit 
from each of these approaches. Therefore, molecular defini-
tions, including consensus molecular subtypes, may aid in 
achieving this goal. Certain MSS CRCs showing mutations 
in POLE and POLD1 may be responsive to immunotherapy.

The combined power of all these drugs must be used to 
optimize the response in patients with mCRC pMMR/MSS.
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