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Introduction
Aging encompasses the progressive deterioration of bodily 
functions over time, driven inexorably by the confluence of 
various pathological, physiological, and psychological pro-
cesses.1 Aging leads to increased susceptibility to disease, 
reduced functional reserve, and decreased healing and 
stress resistance, which makes health unstable.2 Aging of 
the body can lead to a variety of metabolic diseases, includ-
ing cardiovascular disease, obesity, insulin resistance, non-
alcoholic fatty liver disease (NAFLD), chronic hepatitis, and 
osteoporosis. In recent times, there has been a gradual un-
veiling of the molecular mechanisms connecting chronic liver 
disease to osteoporosis. Different types of chronic liver dis-
eases lead to different mechanisms of osteoporosis, and the 
liver-bone axis is a pivotal focus of research. Focusing on 
common chronic liver diseases such as NAFLD, cholestatic 
liver disease, and viral hepatitis, this review summarizes the 
mechanisms of different chronic liver diseases leading to os-

teoporosis in recent years.

Aging and liver
As the largest glandular organ in the human body, the liver 
maintains major metabolic processes in the body, such as 
toxin metabolism, inflammation regulation, and synthesis 
of various biomolecules involved in important physiological 
activities.3 With advancing age, the liver undergoes degen-
erative changes in shape and structure, diminishing in size 
and regenerative capacity compared to its youthful state.4–6 
During aging, the liver tends to exhibit large hepatocytes and 
polyploidy. There is an increase in nuclei and nucleoli, as 
well as ultrastructural changes in liver organelles. Moreover, 
considerable heterogeneity is often observed among differ-
ent cells, even within the same lobule.7

Importantly, aging is a significant risk factor for various 
liver diseases, such as hepatitis, liver fibrosis, cirrhosis, 
and hepatocellular carcinoma. Additionally, the incidence of 
chronic liver disease increases with age and is associated 
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with a poorer prognosis.8,9

Immune imbalances during aging result in continuous pro-
inflammatory factor release, termed inflamm-aging, contrib-
uting to liver dysfunction.10,11 The markers of liver necrosis 
rise with the increase of inflammatory factors, and anti-in-
flammatory treatment can also alleviate the aging of liver.12 
In addition, SIRT2 is closely related to aging and involved 
in the regulation of inflammation, with increased expression 
observed in senescent hepatocytes, playing an important 
role in aging liver inflammation. Chronic inflammation in-
creases the risk of various chronic liver diseases.

Liver fibrosis is a common occurrence in most chronic 
liver diseases. The accumulation of inflammatory-activated 
hepatic stellate cells (HSCs) in the liver contributes to liver 
fibrosis, serving as a precursor to liver cirrhosis.13 Initially, 
HSCs are activated and undergo proliferation in response 
to chronic liver injury, leading to their deposition in the ex-
tracellular matrix of fibrotic scars. Studies have shown that 
in mice lacking regulatory effects on senescence factors, 
HSCs continue to proliferate, eventually resulting in exces-
sive liver fibrosis.14 Senescent HSCs can promote the res-
olution of fibrosis, but the senescence of hepatocytes and 
choanocytes can also contribute to the development of liver 
fibrosis.15 Liver fibrosis in patients with chronic liver disease 
is closely associated with aging. Cirrhosis frequently devel-
ops in the advanced stages of liver fibrosis and is prevalent 
among elderly patients.16

Senescence is one of the significant factors contributing 
to chronic liver diseases. Senescent hepatocytes can induce 
senescence in neighboring hepatocytes, a phenomenon 
known as senescence-induced senescence. This process, 
in turn, continues to activate HSCs and eventually exacer-
bates liver fibrosis.17 The incidence of chronic liver disease 
increases with age, underscoring the pivotal role of liver me-
tabolism and its implications for various complications.

Osteoporosis
Osteoporosis is a systemic disease characterized by the 
loss of bone mass, strength, and microstructure, leading to 
decreased bone strength.18 With the aging of the popula-
tion, the incidence of osteoporosis is increasing annually.19 
Osteoporosis is a significant health concern in aging in-
dividuals, as the gradual loss of bone mass during aging 
leads to osteopenia and osteoporosis.20 The prevalence 
of osteoporosis in elderly worldwide is as high as 35.3%.21 
Notably, the risk of osteoporosis is significantly elevated in 
elderly women compared to elderly men, attributed to the 
declining estrogen levels and increased post-menopausal 
bone loss.22

Bone metabolism is primarily regulated through coordinat-
ed interactions among osteoblasts, osteoclasts, and osteo-
cytes facilitated by key molecules to maintain normal bone 
formation.18 Under healthy conditions, osteoblasts secrete 
various factors to regulate bone metabolism, and the key cy-
tokine regulating the transition between osteoblasts and os-
teoclasts is the receptor activator of NF-kB ligands (RANKL). 
By binding to the RANKL receptor on the surface of osteo-
clast precursor cells, RANKL induces their differentiation into 
mature osteoclasts.23 The RANKL-RANK axis plays a critical 
role in osteoclast differentiation and maturation. When bone 
resorption mediated by osteoclasts exceeds bone formation 
by osteoblasts, the normal balance of bone metabolism is 

disrupted, leading to increased bone loss—the foundation 
of osteoporosis pathogenesis.18 Additionally, the aging en-
vironment in the body can contribute to an increased pro-
duction of osteoclasts and the generation of an inflammatory 
degenerative niche.24

The pathogenesis of osteoporosis is not solely attributed 
to the imbalance of cooperation among bone cells but is 
also closely linked to other organs and tissues.18 Bone me-
tabolism is tightly regulated by various endocrine and signal-
ing molecules throughout the body, including the effects of 
growth, nerves, and gonadotropin subclasses.25,26 As the 
metabolic center of the whole body, the liver plays a crucial 
role, and osteoporosis is a common complication in various 
chronic liver diseases. Notably, 40% of patients with chronic 
liver disease have secondary osteoporosis,27 indicating a sig-
nificant relationship between the liver and bone.

Liver-regulatory role and mechanism of bone 
metabolism
Recent studies have illuminated the potential role of the 
liver in influencing bone metabolism through diverse mecha-
nisms, encompassing exosome delivery, hormonal regula-
tion, pro-inflammatory factor modulation, and protein modi-
fication. In this review, we classify different aspects of the 
molecules that affect bone metabolism, including liver-relat-
ed metabolic factors, cytokines, and proteins involved in the 
regulation of bone metabolism, and focus on the effects of 
exosome secretion on bone metabolism. Simultaneously, we 
delve into additional potential influences tied to chronic liver 
diseases. The purpose of this paper is to provide readers 
with a more comprehensive introduction to the molecules in-
volved in liver-to-bone communication.

Role of hepatic metabolism factors in bone metabolism

VitaminD3 (VitD3)
In the body, VitD3 is primarily synthesized in the skin. VitD3 
is produced from 7-dehydrocholesterol (7-DHC) upon ex-
posure to ultraviolet irradiation,28 and a small amount is 
absorbed by the intestines.29 Hepatic enzymes, namely, 
vitamin D25 hydroxylase, catalyze the hydroxylation of 
VitD3, transforming it into its active form 1,25-dihydroxy-
vitamin D3 (1,25-(OH)2-VitD3).30,31 This active form plays 
a crucial role in maintaining healthy bones. DHC, a cru-
cial precursor of VitD3, is synthesized from cholesterol 
in the liver by cholesterol 7α-hydroxylase (CYP7A1) and 
subsequently degraded to cholesterol by 7-DHC reductase 
(DHCR7).32,33 Increased levels of DHCR7 have been found 
to contribute to the degradation of 7-DHC, a factor linked 
to the development of osteoporosis.32,33 Although the ac-
tivity and quantity of 1,25(OH)2D are not affected in pa-
tients with cirrhosis caused by cholestatic liver disease,34,35 
bone loss persists,36 with the elevated content of DHCR7 
potentially playing a contributing role. In addition, CYP2R1 
and CYP27A1 exhibit decreased expression in the cirrhotic 
liver, leading to the levels of 1,25(OH)2D products, namely, 
24,25-dihydroxyvitamin D (24,25(OH)2D) and 1,24,25-tri-
hydroxyvitamin D (1,24,25(OH)3D3), are increased in cir-
rhosis patients, indicating diminished activity of VitD3 in 
individuals with chronic liver disease.

In conclusion, the role of VitD3 in preventing osteoporosis in 
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patients with liver cirrhosis is complex and needs further study.

Fibroblast growth factor 21 (FGF-21)
FGF-21 is a metabolic hormone secreted by the liver that 
functions as a regulator of glucose and lipid metabolism.37 It 
has been identified as a negative regulator of bone homeo-
stasis.38

Serum FGF21 levels were found to be elevated in patients 
with non-alcoholic steatohepatitis (NASH)/NAFLD,39 indicat-
ing a response to liver lipid accumulation, and serving as 
a biomarker.40 Insulin-like growth binding protein (IGFBP1), 
an endocrine hormone from the liver, plays a crucial role in 
the regulation of osteoclastogenesis. Moreover, FGF21 can 
increase the secretion of IGFBP1, and IGFBP1, in turn, fa-
cilitates osteoclastogenesis by enhancing RANKL signaling 
through its receptor integrin β1.41 In mice undergoing ova-
riectomy surgery to simulate postmenopausal conditions in 
women, the administration of an IGFBP1 inhibitor blocked 
FGF21-enhanced bone resorption, significantly reduced se-
rum FGF21 levels, and effectively alleviated bone loss.41

Recombinant human FGF21 (rhFGF21) is a potential 
drug for the treatment of NAFLD and type 2 diabetes, but the 
side effects of this drug on osteoporosis are worrisome.42 In 
future studies, IGFBP1 antagonists could be explored as a 
potential solution to address this issue.

Insulin-like growth factor-1 (IGF-1)
IGF-1 is a vital growth factor secreted by the liver.43 The 
liver is the primary site for IGF-1 secretion in the body, with 
a small amount also being secreted in bone.44 IGF-1 pre-
sents in ternary complexes, consisting of IGF molecule, IGF-
binding protein 3 (IGFBP-3), and acid-labile subunits (ALS), 
serving as the principal storage form of IGF-1.45 Studies in-
volving the targeted knockout of IGF-1 or ALS specifically in 
the liver of mice showed that while IGF-1 levels decreased to 
varying degrees, normal bone growth was still maintained.45 
However, when both IGF-1 and ALS were knocked down, 
IGF-1 levels were significantly reduced, resulting in a sub-
stantial weakening of bone growth.45 These findings suggest 
that a certain amount of IGF-1, IGFBP-3, and ALS is neces-
sary to maintain bone homeostasis.

In NASH/NAFLD patients, the serum level of IGF-1 was 
notably lower compared to the control group.43 The reduc-
tion of the IGF-1/IGFBP-3/ALS ternary complex may also 
contribute to the development of osteoporosis caused by 
chronic liver diseases.46 In conclusion, different IGF-1 and 
its complexes play unique roles in bone growth, exerting dif-
ferent effects on cortical and trabecular bone growth.47

Fetuin-A
Fetuin-A, also known as alpha 2-Heremans-Schmid glyco-
protein (AHSG), is synthesized in the liver and plays a sig-
nificant role in insulin resistance.48 Elevated levels of Fetuin-
A are observed in NAFLD, and a notable improvement in 
NAFLD is noted when Fetuin-A is reduced through dietary 
and exercise interventions.49,50

Recent studies have indicated that the level of circulating 
Fetuin-A is associated with bone metabolism, serving both 
as a mineral carrier protein and an inhibitor of systemic ex-
tra-osseous calcification.51 In a study on Fetuin-A-deficient 
Ahsg−/− mice, femur growth was restricted.52 Similarly, post-
menopausal women with osteoporosis due to inadequate 

estrogen secretion exhibit lower serum Fetuin-A levels than 
their peers.53 When pursuing fetuin-A targeting for the treat-
ment of obesity or type 2 diabetes to maintain insulin sensi-
tivity, it is crucial to acknowledge the potential risk of disrupt-
ing bone homeostasis.

Oncofetal fibronectin (OFN)
Fibronectin (FN) is a ubiquitous extracellular matrix protein 
in the body that plays a pivotal role in bone formation. It regu-
lates osteoblast differentiation and promotes the recruitment 
of osteogenic precursor cells.54 In the absence of FN, fibro-
blasts can still differentiate into osteocytes, but these osteo-
cytes are unable to undergo mineralization, thereby impact-
ing bone formation.55 The glycosylation of FN at threonine 
residue 33 results in OFN.55

Patients with cholestatic liver disease often exhibit elevat-
ed levels of OFN.56 Researchers have noted a negative cor-
relation between OFN and the bone formation marker osteo-
calcin, suggesting that increased OFN levels are associated 
with decreased bone formation.55 However, this correlation 
is specific to cholestatic liver disease and has not been ob-
served in other chronic liver diseases.55

Under normal circumstances, the liver produces proto-
plasma fibronectin (pFN).57 In patients with chronic liver dis-
ease, FN levels increase, and HSCs undergo glycosylation 
of FN to form OFN due to cytotoxins such as CCl4.57 Recent 
studies on OFN and osteoblasts have shown that glycosyla-
tion of OFN hinders the differentiation of osteoblasts, lead-
ing to hepatic osteodystrophy, but this harmful effect can be 
reduced by binding α4β1. Because OFN is a type of FN, FN 
can bind to various integrin pairs located on the cell surface 
through different domains, thereby influencing different intra-
cellular signals in cells.56,58 The reduction in mediated sign-
aling due to FN glycosylation may result in hepatic osteodys-
trophy. This decrease in signal transduction can potentially 
be counteracted by the binding of α4β1 integrin to antibodies 
or peptides, providing a novel strategy for the treatment of 
hepatic osteodystrophy.56

Role of modifying enzymes in liver-bone communication

SIRT2
SIRT2, a nicotinamide adenine dinucleotide (NAD+)-de-
pendent protein deacetylase, is the primary silent regulatory 
protein highly expressed in the liver.59 SIRT2 plays a sig-
nificant role in aging and metabolic regulation and is also in-
volved in cell differentiation and apoptosis. In macrophages, 
SIRT2 deacetylates NLRP3, inactivating the NLRP3 inflam-
masome and offering a potential target for reversing aging-
associated inflammation and insulin resistance.60 Moreover, 
studies have shown that SIRT2 is implicated in various liver 
diseases, such as alcoholic liver disease, NAFLD, and liver 
fibrosis.61,62

Recent research has revealed that hepatocyte SIRT2 also 
plays a crucial role in the liver-bone axis, maintaining bone 
homeostasis and preventing osteoporosis.63 This study 
showed that hepatocyte SIRT2 expression is increased in 
aged mice and older patients. Liver-specific SIRT2 deficien-
cy (SIRT2-KOhep) obviously inhibits osteoclastogenesis and 
alleviates osteoporosis in aged and postmenopausal osteo-
porosis mouse models. Mechanistically, leucine-rich alpha-
2-glycoprotein 1 (LRG1), which is required for the protection 
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of SIRT2-KOhep against osteoclastogenesis, was identified 
as the functional cargo in hepatocyte-derived small extracel-
lular vesicles (sEVs). In hepatocytes, SIRT2-KOhep up-reg-
ulates the expression of LRG1 in hepatocyte-derived sEVs 
(sEVs-LRG1) through increasing the acetylation of H4K16. 
The sEVs-LRG1 is transferred to bone marrow-derived 
monocytes (BMDMs) to suppress osteoclast differentia-
tion by directly inhibiting the nuclear translocation of NF-κB 
p65. Therapeutically, treating ovariectomized mice with the 
SIRT2 pharmacological inhibitor AGK2 or sEVs purified from 
LRG1-overexpressing AML12 hepatocytes obviously attenu-
ated osteoclastogenesis and bone loss. Accordingly, sEVs 
derived from human LRG1-high plasma or hepatocytes in-
hibited by SIRT2 may markedly inhibit human osteoclast 
differentiation. Moreover, treatment with high-expressing-
LRG1-sEVs was superior to denosumab in preventing the 
rebound effect of human osteoclastogenesis. Importantly, 
the clinical data showed that the plasma sEVs-LRG1 con-
centration was positively correlated with bone mineral den-
sity and negatively related to bone resorption markers in 
patients. The regulation of sEVs-LRG1-BMDM-p65 axis by 
hepatic SIRT2 might lead to effective therapeutic targets for 
treating osteoporosis.63

Lecithin cholesterol acyltransferase (LACT)
LACT is the enzyme responsible for the formation of cho-
lesterol esters from unesterified cholesterol (UC) and phos-
pholipid (PL) molecules in high-density lipoprotein choles-
terol particles.64 Protein phosphatase 2A (PP2A) is a critical 
member of the protein phosphatase family and plays a regu-
latory role in phosphorylation modifications in most eukaryot-
ic cells.65 In addition, studies have shown that PP2A reduces 
CCl4-induced acute liver injury.66,67

The expression of PP2Aα was found to be significantly 
increased in the livers of patients with chronic hepatobiliary 
disease, leading to the downregulation of hepatocyte LCAT 
expression. In PP2Aα-deficient mice, osteoporosis was sig-
nificantly improved, and LCAT expression in the liver was 
notably increased. Studies have revealed that PP2A regu-
lates LCAT expression by dephosphorylating the transcrip-
tion factor USF1, which contributes to the improvement of 
osteoporosis in mice.68

In addition, there is a positive correlation between the con-
tent of high-density lipoprotein and bone mass. Metabolically 
disordered high-density lipoprotein can impact normal bone 
formation in various ways.69 LCAT, due to its association with 
cholesterol transport,70 has been found to regulate the level 
of intracellular cholesterol. It plays a role in maintaining the 
balance of bone metabolism between osteoblasts and os-
teoclasts and promotes reverse cholesterol transport from 
bone to the liver, leading to the improvement of osteoporosis 
and the reduction of liver fibrosis in mice.68

Tumor necrosis factor-alpha (TNF-α)
TNF-α is an immunomodulatory proinflammatory factor pri-
marily produced by macrophages, T cells, and NK cells.71 Its 
secretion is significantly increased in patients with glucose 
and lipid metabolism disorders, viral hepatitis, or NAFLD, af-
fecting bone metabolism as well. TNF-α promotes chronic 
liver inflammation, exacerbates liver injury, and contributes to 
chronic hepatitis in NAFLD patients.72 Moreover, TNF-α exac-
erbates the inflammatory response in other parts of the body. 

TNF-α induced by osteoclasts participates in the processes of 
rheumatoid arthritis, orthopedic implant loosening, and other 
forms of chronic inflammatory osteolysis. It is closely related to 
RANKL, as TNF-α requires RANKL to regulate macrophages 
and stabilize osteoclasts.73 Furthermore, TNF-α can enhance 
osteoclast generation through macrophage colony-stimulat-
ing factor (M-CSF).74 However, TNF-α not only affects osteo-
clasts but also inhibits the recruitment and differentiation of 
progenitor cells to osteoblasts.75 Increased TNF-α levels are 
observed in estrogen-deficient mice.76 Additionally, a negative 
correlation exists between vitamin D and TNF-α levels.77 This 
suggests that TNF-α may play a role in the crosstalk between 
the liver and bone.

Colony-stimulating factor-1 (CSF-1)
CSF-1, also known as M-CSF, is a chemotactic factor for 
monocytes and macrophages.78 In cholestatic liver disease 
patients with osteoporosis, there is a significant increase in 
the number of osteoclast-like cells with evident formation of 
peripheral monocytes. The osteoclast-like cells exhibit func-
tional activity when co-cultured with both CSF-1 and recep-
tor activator of nuclear factor κβ ligand (RANKL) in vitro.79 
This finding suggests that osteoporosis in cholestatic liver 
disease may be related to the early formation of osteoclasts 
and that the content of CSF-1 is increased in patients with 
cholestatic liver disease complicated with osteoporosis. 
CSF-1 may be an important key factor responsible for guid-
ing monocytes to form osteoclasts79

Interleukin (IL)-17
IL-17 is a member of the inflammatory cytokine family. To-
gether with T helper 17 (TH17) cells, IL-17 plays a crucial role 
in tissue inflammation, autoimmunity, and host defense.80,81

TH17 cells influence bone homeostasis by promoting the 
differentiation of osteoclasts.82,83 In autoimmune arthritis, 
a subset of TH17 cells with high levels of RANKL and pro-
inflammatory factors is present, contributing to bone loss. IL-
17, produced by TH17 cells, is closely associated with bone 
loss.84 Studies on alcoholic fatty liver disease have reported 
extensive infiltration of TH17 cells in the liver, leading to the 
production of IL-17.85 Elevated IL-17 in patients with alco-
holic fatty liver disease may represent another pathway of 
liver-bone crosstalk.

Osteopontin (OPN)
OPN is a growth regulatory protein and factor that is wide-
ly expressed in various cells and tissues. Moreover, OPN 
plays an important role in the metabolic processes of organs 
and tissues, contributing to aging.86 In patients with NAFLD/
NASH, OPN is abundantly expressed in the liver and acti-
vates hedgehog signaling, promoting liver fibrosis.87 Geneti-
cally, OPN-deficient mice exhibit reduced triglyceride syn-
thesis, preventing obesity-induced hepatic steatosis.88

Notably, OPN is not only involved in liver metabolic diseases 
but also has an impact on bone metabolism, promoting bone 
loss in patients with osteoporosis. It acts as a downstream 
signaling molecule of RANK/RANKL,89 promoting osteoclast 
differentiation and proliferation. Moreover, OPN was demon-
strated to interact with CD44, an essential component of oste-
oclast activity. It is suggested that OPN controls the migration 
and adhesion of osteoclasts to the bone matrix by enhancing 
CD44 expression on osteoclasts.90 OPN-deficient mice had 
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resistance to osteoporosis after ovariectomy surgery, and os-
teopontin has been clinically identified as a high-risk factor for 
osteoporosis in postmenopausal women.91 Furthermore, sub-
sequent studies have revealed that OPN leads to parathyroid 
hormone induced tartrate-resistant acid phosphatase positive 
cells increase in bone, which helps protect from osteoporosis 
through increasing bone resorption.92 Due to its involvement 
in bone metabolism, OPN represents a potential therapeutic 
target for hepatic osteodystrophy.

Osteoprotegerin (OPG)
OPG, a member of the tumor necrosis factor receptor super-
family, is a decoy receptor for tumor necrosis factor-related 
apoptosis-inducing ligands.93 In NASH patients, the con-
centration of OPG is significantly reduced.94 Initially, OPG 
was considered the factor that led to increased bone mineral 
density (BMD). However, clinical practice has revealed that 

OPG can affect the BMD of the lumbar spine in men but has 
no effect on the BMD of other organs.95 In females, OPG 
influences the BMD of the vertebrae.96 In general, the role of 
OPG in patients with chronic liver disease and osteoporosis 
still needs further study.

Conclusion
In the context of population aging, individuals often contend 
with a dual burden of morbidity and a diversity of age-related 
diseases. Nearly all patients with chronic liver disease under-
go disruptions in bone metabolism, with up to two-thirds pre-
senting signs of osteoporosis. This prevalence significantly 
compounds the challenges in treatment.68 While chronic 
liver disease and osteoporosis may seem unrelated among 
the elderly, numerous studies have investigated the ability of 

Fig. 1. Factors affecting bone turnover in patients with liver disease. Solid black arrows indicate pathways affecting osteoclasts, while 
the dashed black arrows represent pathways affecting osteoblasts. FGF21 levels are elevated in the serum of NAFLD/NASH patients, leading 
to increased liver secretion of GFBP1 and the promotion of osteoclast generation. NAFLD patients exhibit elevated levels of Fetuin-A, IGF-
1, and OPN, inducing osteoclast formation. Elevated SIRT2 levels in aged hepatocytes decrease the secretion of LRG1-sEVs and increase 
the phosphorylation of p65 in the nucleus of macrophages, contributing to bone loss. In chronic liver disease, the number of macrophages 
and pro-inflammatory- cytokines TNF-α, IL-17, and CSF-1 increase, enhancing bone metabolism. Decreased Vitamin D3 results in reduced 
osteoblast production. Oncoembryonic fibronectin produced by activated stellate cells in primary biliary cirrhosis patients inhibits osteoblasts 
and bone formation. At present, many studies on liver-bone communication are based primarily on rodent models, and their direct applicability 
to clinical settings is limited. Furthermore, the specific mechanisms related to the involvement of cytokines and proteins in liver-bone commu-
nication remain poorly understood. With the emergence of advanced multi-omics research in the current era, there are increasingly promising 
avenues for delving into the pathophysiological intricacies of liver-bone communication. This holds great potential for developing enhanced 
treatment strategies for chronic liver diseases accompanied by osteoporosis. [VitD3, vitaminD3; TNF-α, TNF alpha;FGF-21, Fibroblast growth 
factor 21; LACT,Lecithin cholesterol acyltransferase;FN, Fibronectin; OFN, Oncofetal fibronectin ; GFBP1, Insulin-like growth binding protein; 
IGF-1,Insulin-like growth CSF-1, factor-1; Colony-stimulating factor-1; LRG1,leucine-rich alpha-2-glycoprotein 1; OPN, Osteopontin; IL-17, 
Interleukin (IL)-17]. Created with BioRender.com.
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the liver to influence bone metabolism through various path-
ways. Consequently, unraveling the intricate relationship be-
tween the liver and bone is of paramount importance. The 
liver can influence the pattern of bone metabolism through 
a variety of mediators. Not only is Vitamin D3 closely associ-
ated with osteoporosis among hepatic metabolites, but also 
various hormones and growth factors secreted by the liver 
exert distinct impacts on bone metabolism. Factors such as 
FGF-21, IGF-1, IGFBP1, Fetuin-A, and pro-inflammatory 
factors like TNF-α, IL-17, and CSF-1 all play significant roles 
in the intricate process of bone metabolismFurthermore, 
modifying enzymes such as SIRT2 and LACT, along with 
OPN and OCN, play significant roles in bone remodeling. 
The impact of SIRT2 on bone homeostasis was found to in-
fluence the regulation of the RANK-RANKL axis through the 
trafficking of LRG1 to sEVs. On the other hand, when the 
level of FN-glycosylated OFN is increased in chronic liver 
disease, bone remodeling is reduced, and bone loss is in-
creased. Most cytokines and proteins affect RANKL directly, 
influencing the differentiation and formation of osteoclasts 
and bone homeostasis. LCAT is suggested to maintain bone 
through intracellular cholesterol regulation, which supports 
the effect of lipid metabolism disorders on bone metabolism 
in chronic liver disease. Additionally, the occurrence and 
development of liver disease are closely linked with chronic 
inflammation induced by aging. Some inflammatory factors, 
such as TNF-α and IL-7 as mentioned above, can lead to 
bone loss. Pro-inflammatory factors have the potential to 
mediate liver-bone communication, although there is no di-
rect evidence supporting this phenomenon (Fig. 1).
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