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Introduction
Age-related macular degeneration (AMD) is a disease that 
mainly affects the vision of the elderly and is one of the 
main causes of blindness in developed countries. With the 
increasing trend of population aging, the incidence of AMD 
rate and social burden are also increasing, and are expected 
to reach 288 million in 2040.1–3 Therefore, it is of significant 
clinical significance to deeply explore the pathogenesis of 
AMD and find effective treatment strategies.

AMD is a multifactorial disease involving complex interac-
tions between aging, genetic predisposition, and environmen-
tal risk factors.4–7 Multiple reviews have shown that chronic 
inflammation, oxidative stress, and lipid deposition are closely 
related to the pathogenesis of AMD.8–12 The current study 
found that the accumulation of cellular waste and problems 
with its clearance also play an important role in its pathologi-
cal mechanism.13–16 The ubiquitin-proteasome system (UPS) 
and autophagy are two important mechanisms for degrading 
and removing abnormal proteins and organelles in cells.17,18

The UPS delivers soluble, short-lived, misfolded, or damaged 
proteins to the proteasome, which has important functions in the 
regulation of cellular signaling and transcription.19,20 Autophagy 
is a vesicular trafficking pathway specifically responsible for the 
delivery of long-lived proteins, soluble or insoluble protein ag-
gregates, and damaged organelles to lysosomes.21–23 There 
are complex interactions and regulatory mechanisms between 
UPS and autophagy. Selective autophagy requires UPS to par-
ticipate in the ubiquitination and degradation of target proteins, 
and the function and synthesis of UPS are also affected by au-
tophagy.17 However, in AMD, the separate or synergistic effects 
of ubiquitin-proteasome and autophagy are impaired, result-
ing in the accumulation of damaged organelles and abnormal 
proteins, which in turn trigger inflammatory responses and cell 
death, accelerating the progression of AMD.10,16,24

This review aims to systematically summarize and analyze 
the interaction and regulation of ubiquitin-proteasome and au-
tophagy in the pathogenesis of AMD. We review the existing 
literature, explore the function and abnormality of ubiquitin-
proteasome and autophagy in AMD, and analyze their asso-
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ciation with AMD and possible therapeutic strategies. A deep 
understanding of the mechanism of ubiquitin-proteasome and 
autophagy is of great significance for revealing the pathogen-
esis of AMD and developing therapeutic strategies.

AMD
AMD is clinically classified as early and late stage depend-
ing on the size of the drusen and on pigmentary abnormali-
ties.25 Vision impairment in early AMD is mildest and is often 
accompanied by reduced reading ability, vision distortions, 
and black or gray spots in central vision. In the late stage of 
AMD, large or moderate drusen or pigmentary abnormalities 
occur, and the patients’ central vision is significantly affect-
ed.26 Late AMD can occur in dry (atrophic) or wet (exudative, 
neovascular) forms.25 Dry AMD is the most common form 
of AMD, and it accounts for approximately 80–90% of AMD 
patients. It usually involves progressive atrophy of the retinal 
pigment epithelium (RPE), choroidal capillaries, and photo-
receptors. Patients with dry AMD usually experience slow or 
limited vision loss.27,28 Neovascular AMD (nAMD) is a more 
rapidly progressive and severe form of AMD, accounting for 
approximately 10–20% of AMD cases. nAMD is primarily 
caused by the growth of abnormal new blood vessels that 
leak blood, lipids, and fluid into the macular area, causing 
damage and scarring of retinal tissue.29,30

AMD is a progressive, degenerative eye disease that af-
fects the macula, the central area of the retina, and causes 
distorted vision. The hallmark of AMD is the accumulation of 
lysosomal lipofuscin in the RPE cells of the macula, the pres-
ence of extracellular drusens between the basal layer of the 
RPE and Bruch’s membrane, and the progressive degenera-
tion of photoreceptors and adjacent tissues, leading to loss 
of central vision.31–33

Role of UPS in AMD
The UPS is a cytoplasmic protein degradation system in-
volved in the ubiquitination and degradation of target pro-
teins.34 The UPS is the major proteolytic pathway for short-
lived, misfolded, and damaged proteins. It has important 
functions in the regulation of cellular signaling and transcrip-
tion and is involved in a variety of cellular functions.35 The 
key molecule in this system, ubiquitin, is a small protein 
marker that, by binding to a target protein, marks it for deg-
radation. The ubiquitination process involves the synergy of 
multiple enzymes such as ubiquitin-activating enzyme, ubiq-
uitin-conjugating enzyme, and ubiquitin ligase (E3 ligase). 
Once a target protein is ubiquitinated, it is recognized and 
sent to the proteasome for degradation.34 There are a vari-
ety of proteases inside the proteasome, which can degrade 
ubiquitinated proteins into small molecules to maintain the 
dynamic balance of intracellular proteins.36,37 At present, 
some studies have found that the abnormality of UPS is also 
related to the occurrence and development of AMD.

Protein homeostasis regulation
The main function of the UPS is to clear abnormal or aged pro-
teins in cells through ubiquitination and proteasomal degrada-
tion. Studies have found that the abnormality of the ubiquitina-
tion process, the defect of the E3 ligase, and the degradation 

of the protein in the proteasome are blocked, resulting in the 
accumulation and aggregation of abnormal proteins, causing 
cell damage and apoptosis, and then leading to AMD.38

Oxidative stress and inflammation
Impairment of the UPS may lead to increased intracellular 
oxidative stress and inflammatory responses. This is due to 
the inability of damaged UPS to effectively remove oxida-
tively damaged proteins and activated inflammatory media-
tors in a timely manner. The increase of oxidative stress and 
inflammatory reaction leads to further expansion of cell dam-
age, thereby accelerating the progression of AMD.39

Genetic factors
Certain genes and genetic variants are associated with the 
risk of developing AMD. Some of these genes are key genes 
for UPS, and mutations in these genes cause the UPS to 
function abnormally, thereby increasing the risk of develop-
ing AMD in patients. In our previous study of the East Asian 
AMD population, we found that mutations in the ubiquitin 
protein ligase E3D (UBE3D) gene can lead to AMD. UBE3D 
accepts ubiquitin from specific E2 ubiquitin-conjugating en-
zymes and transfers them to substrates, then promotes their 
degradation by the proteasome.6,40 There is also a study that 
speculates that the LIM (Lin11, Isl-1, and Mec-3) domain 
protein LIM domain only 7 (LMO7) may be the causative 
gene that causes AMD. The role of this gene is to mediate 
ubiquitination and proteasomal degradation and regulate the 
fibrotic response after injury.41,42

Role of autophagy in AMD
Autophagy is an important intracellular process for the degra-
dation and removal of abnormal proteins and damaged orga-
nelles. It maintains the stability of the intracellular environment 
by forming autophagosomes to wrap and degrade intracellular 
waste, damaged proteins, and organelles.22 Generally, au-
tophagy can be divided into three types: (1) Macroautophagy: 
A C-shaped double-layer membrane structure is generated in 
the cytoplasm, and the two ends extend to wrap part of the cy-
toplasm and organelles to form autophagosomes. Autophago-
somes then combine with lysosomes to form autolysosomes. 
(2) Microautophagy: The lysosomal membrane is directly in-
vaginated to wrap the components in the cytoplasm, and then 
form vesicles. (3) Chaperone-mediated autophagy: After being 
recognized by molecular chaperones, cytoplasmic proteins with 
special motifs combine with the lysosome-associated mem-
brane protein type 2A on the lysosome membrane, and then 
enter the lysosome to be degraded.43,44 The autophagy process 
includes three key steps, the formation, fusion, and degradation 
of autophagosomes. When autophagosomes are formed, cells 
wrap waste or damaged materials into autophagic vesicles, 
forming a double-membrane structure. The class-1 phospho-
inositide 3-kinase (PI3K) and its product phosphatidylinositol 
3-phosphate are involved in this process.45–47 Together with 
protein kinase B (Akt) and the mammalian target of rapamycin 
(mTOR), it forms the PI3K/AKT/mTOR signaling pathway that is 
important for cell survival and growth.48–50 Rapamycin is a drug 
that inhibits the activity of mTOR in this step, thereby promoting 
autophagy.51 Subsequently, isolation membrane wraps around 
degradation vesicles to form autophagosome, and autophago-
some fuses with lysosome membranes to form autolysosome, 



Nat Cell Sci 2023;1(1):2–8 
https://doi.org/10.61474/ncs.2023.00011

Nature Cell and Science | www.cellnatsci.com4

in which waste products and proteins are degraded into small 
molecules. Finally, the degradation products are released into 
the cytoplasm by transporters on the lysosomal membrane for 
reuse by the cell.52 Abnormal autophagy can lead to the occur-
rence and development of AMD, and it is currently found that it 
mainly affects the function of pigment epithelial cells, increases 
cell apoptosis, and causes damage to mitochondrial function. 
However, the specific mechanisms and interactions still require 
further studies to be fully understood.

impaired function in retinal pigment epithelial cells
The development of AMD is closely related to the abnormal 
function of retinal pigment epithelial cells. Abnormal au-
tophagy may lead to the accumulation of harmful metabo-
lites such as peroxides, lipid, and protein aggregates in pig-
ment epithelial cells. These accumulated substances may 
negatively affect the normal function of the cells, leading to 
impaired function of the pigment epithelium, which contrib-
utes to the development of AMD.13,53,54

Defective autophagy
Abnormal autophagy can lead to increased apoptosis (pro-
grammed cell death). Normally, autophagy removes dam-
aged or aged organelles and proteins, thereby maintaining 
cellular homeostasis. However when autophagy is impaired, 
cells cannot effectively remove harmful substances, which 
can lead to the accumulation of intracellular stress and dam-
age, eventually triggering apoptosis.55 Impaired autophagy 
leads to the accumulation of drusen and lipids. The peroxi-
some proliferator-activated receptor-γ coactivator-1 alpha 
regulates autophagy and mitophagy.56 Studies have found 
that knocking out this gene in mice inhibits autophagy in the 
RPE and retina, leading to the accumulation of drusen-like 
substances.57 In addition, the FIP200 protein is involved in 
the formation of autophagosomes, and conditional knockout 
of this gene in mice leads to reduced autophagy, and these 

mice exhibit increased lipid accumulation with age.58,59

Mitochondrial function damage
Mitochondria are energy production centers within cells and 
important regulators of the autophagy process. Abnormal 
autophagy can lead to impairment of mitochondrial function, 
which in turn affects cellular energy metabolism and oxida-
tive stress. Damage to mitochondrial DNA is associated with 
the development of AMD, and damage to mitochondrial DNA 
can lead to abnormal mitochondrial function, further aggra-
vating cellular metabolic disorders and cell death.10,60

Genetic factors
Deficiency of calcium and integrin-binding protein 2 (CIB2) 
in mice has been found to lead to age-related retinopathy, 
including sub-RPE deposition, significant accumulation of 
drusen, and impaired visual function. CIB2 mutant mice 
have reduced lysosomal capacity and autophagic clearance, 
as well as increased expression of mTORC1, a negative 
regulator of autophagy. This defect was also observed in the 
RPE/choroid of dry AMD patients.61

Interaction and reciprocal regulation of UPS 
and autophagy
In the past, UPS and autophagy have been considered as two 
independent protein degradation mechanisms. Autophagy is 
a vesicular trafficking pathway specialized for the delivery of 
long-lived proteins, soluble or insoluble protein aggregates, 
and damaged organelles to lysosomes.62 The UPS, on the 
other hand, delivers soluble, short-lived, misfolded, or dam-
aged proteins to the proteasome.63,64 Some recent studies 
have found that the two systems cooperate and influence 
each other. First, several molecules are shared by the UPS 
and autophagy (Fig. 1). Both systems use ubiquitin as a signal-

Fig. 1. Crosstalk between proteasome and autophagy. ATG, autophagy-related genes; ATP, adenosine triphosphate; PE, phosphatidyle-
thanolamine.
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ing molecule to tag regulators or substrates of proteins for deg-
radation.65 Additionally, two ubiquitin-like binding systems are 
involved in the fusion process of autophagy. One is the ATG12/
ATG5 system. The autophagy factor ATG12-ATG5 conjugate 
has E3 ligase-like activity and is required for lipidation by LC3 
in autophagy.66,67 Another system includes ATG8 and its target 
molecules phosphatidylethanolamine and ATG4.68,69

Inhibition of the UPS leads to a compensatory increase 
in autophagy through multiple mechanisms. For example, 
proteasome inhibitor MG132 and chemotherapeutic drug 
bortezomib inhibit proteasome activity, leading to increased 
expression of autophagy genes ATG5 and ATG7 and in-
duction of autophagy.70,71 A cellular model of proteasome 
substrate accumulation due to combined knockdown of 
PSMD4/S5a and ADRM1 (two proteasome ubiquitin re-
ceptors) was also developed. This model reveals a com-
pensatory autophagy pathway mediated by SQSTM1/p62-
dependent clearance of accumulated polyubiquitinated 
proteins.72 In a study of RPE cells, treatment with low-level 
proteasome inhibitors activated autophagy by inhibiting the 
PI3K-Akt-mTOR pathway.73

Impaired autophagy also leads to the activation of the. 
UPS. Chemical inhibition of autophagy and small RNA-me-
diated knockdown of the ATG gene lead to upregulation of 
proteasome subunit levels and increased UPS activity in co-
lon cancer cells.74 On the other hand, inhibiting autophagy 
can also impair UPS function. It has been found that after 
inhibition of autophagy, accumulated p62 inhibits the protea-
some degradation of ubiquitinated proteins by delaying the 
delivery of ubiquitinated proteins to the proteasome.75

Conclusions and future perspectives
The UPS and autophagy have important roles in the patho-
genesis of AMD. Their abnormal function or failure of inter-
actions leads to the accumulation of abnormal proteins and 
damaged organelles, triggering inflammatory response and 
cell death, accelerating the progression of AMD. Although 
some research progress has been made on the role of ubiq-
uitin-proteasome and autophagy in AMD, there are still many 
questions to be further studied and resolved. Here are some 
possible future research directions.

In-depth understanding of the interaction mechanism 
between ubiquitin-proteasome and autophagy
Further research on the interaction mechanism between 
ubiquitin-proteasome and autophagy, including key mol-
ecules and signaling pathways regulating autophagy and 
the ubiquitination process, will help reveal the specific role 
of ubiquitin-proteasome and autophagy in AMD and adjust-
ment mechanism.

Development of therapeutic strategies targeting ubiqui-
tin-proteasome and autophagy
Based on the in-depth understanding of ubiquitin-proteas-
ome and autophagy, develop therapeutic strategies target-
ing these pathways, such as drug intervention, gene therapy, 
etc. This helps to restore the normal function of ubiquitin-
proteasome and autophagy, reducing the accumulation of 
abnormal proteins and damaged organelles, thereby de-
laying the progression of AMD. Antiangiogenesis therapies 
targeting vascular endothelial growth factor (VEGF) have 

revolutionized the treatment of neovascular ocular diseases, 
including nAMD. This therapeutic strategy slows disease 
progression by inhibiting the formation and leakage of ab-
normal blood vessels.76 Treatment of macular neovasculari-
zation with VEGF-inhibiting biologics is a milestone in AMD 
treatment. However, response to treatment varies, and not 
all patients achieve or maintain consistently good vision 
over the long term. The pathophysiological mechanisms un-
derlying this differential response are not fully understood. 
Furthermore, existing anti-VEGF strategies do not prevent 
the development of atrophy, which also leads to vision loss 
in the long term. AMD represents a spectrum of diseases 
comprising distinct phenotypes with distinct pathogenesis. 
Therefore, tailoring treatments to specific phenotypes and 
stages may be the key to preventing irreversible vision loss 
in the future.77,78

Based on the important roles of ubiquitin-proteasome 
and autophagy in AMD, modulating ubiquitin-proteasome 
and autophagy functions could also be a potential thera-
peutic strategy. One strategy is to promote the degradation 
of abnormal proteins and damaged organelles by activat-
ing the autophagy pathway. This can be achieved through 
drug intervention, nutritional regulation, or gene therapy. 
Some drugs have been found to modulate the activity of the 
autophagy pathway, such as autophagy inducers such as 
rapamycin and chloroquine.61,79 These drugs promote the 
degradation of abnormal proteins and damaged organelles, 
reducing inflammation and cell death.80,81

Another strategy is to promote the degradation of target 
proteins by modulating ubiquitin-proteasome function. This 
can be achieved through methods such as drug interven-
tion or gene therapy. Several drugs have been found to 
modulate ubiquitin-proteasome function, such as E3 ligase 
inhibitors and ubiquitin protease activators. For example, the 
small-molecule compounds 33–11 and KH-4-43, proteolysis 
targeting chimeras, and some patented compounds, such 
as panepophenanthrin, himeic acid A, and dimeric sterols 
(manadosterols A and B), etc.82,83 These drugs can enhance 
the degradation of ubiquitinated proteins and reduce the 
accumulation of abnormal proteins. However, further stud-
ies are needed to evaluate the efficacy and safety of these 
drugs in the treatment of AMD.

Explore the relationship between ubiquitin-proteasome 
and autophagy and other diseases
In addition to AMD, ubiquitin proteasomes and autophagy 
also have important roles in other ocular diseases and neu-
rodegenerative diseases. Further research on the associa-
tion between UPS and autophagy and these diseases will 
help reveal their common mechanisms and therapeutic strat-
egies in different diseases.

Development of new assays and biomarkers for UPS 
and autophagy
Development of sensitive and specific assays and biomark-
ers for the assessment of ubiquitin-proteasome and au-
tophagy function and activity. This helps in the early diagno-
sis and monitoring of the development of AMD and provides 
a basis for the selection of treatment strategies. In general, 
future research should continue to deeply explore the mech-
anism of UPS and autophagy systems in AMD, and translate 
the results of laboratory research into clinical applications. 
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Through in-depth research and the development of innova-
tive treatment strategies, we can provide AMD patients with 
better treatment options, reduce their suffering, and improve 
their quality of life.
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