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Introduction
Myeloid cells play vital roles in the health and disease of 
the central nervous system (CNS).1,2 The cell composition 
of myeloid cells in CNS mainly includes microglia, mono-
cytes, macrophages, dendritic cells, and granulocytes.3 In 
the healthy CNS parenchyma, monocytes, and granulocytes 
are absent. They are rather localized in the leptomeninges.3 
However, in CNS pathologies, various myeloid cells, such 
as microglia, monocytes, macrophages, dendritic cells, and 
granulocytes, can appear and be active in the pathological 
CNS parenchyma.3 Although there have been many studies 
on these cells, how to clearly distinguish them is still a dif-

ficult problem.
Morphology, immunohistochemistry, and flow cytome-

try are frequently used to identify these cells.4–6 Morphol-
ogy mainly relies on conventional staining to identify cells 
through characteristic morphology under the microscope, 
which is very subjective. Moreover, their morphologies are 
very similar under pathological conditions, therefore conven-
tional morphology has been unable to distinguish them.7 Im-
munohistochemistry and flow cytometry can identify myeloid 
cells by labeling their markers with a panel of antibodies. 
Combining these two methods, we can both quantify and lo-
cate, which seems to be a perfect scheme. However, in prac-
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the subtypes of myeloid cells in the central nervous system (CNS). Single-cell RNA sequencing (scRNA-Seq), which can 
divide the cells into different clusters based on the similarity of gene expression, is a promising technology to solve this 
question. However, the cell type identity based on the data of scRNA-Seq is still a knotty problem. Although, there are 
many bioinformatics software and R/Python coding. For ordinary researchers, this is indeed a challenge. Therefore, a 
simple and effective cell type identification method is needed.

Methods: Combining CellMarker, PanglaoDB, Mouse Cell Atlas, and the recent literature, the authors designed an Excel 
template, in which a panel of gene makers corresponding to the myeloid cells were included. The 83 cell clusters, from 
several recently reported single-cell data, were used to verify its accuracy. Bowker’s test and kappa symmetric measures 
were used to test its difference and consistency with the literature, respectively.

Results: The template could easily distinguish myeloid cell-subtypes based on the normalized and clustered data. Com-
pared with the literature, the overall consistency rate was 93.98%. There was no statistically significant difference (Bowk-
er’s test, p > 0.05). Kappa symmetric measures showed that the kappa value = 0.642 (p < 0.01).

Conclusions: The template can be used to distinguish the myeloid cell-subtypes of CNS, it will also encourage research-
ers pertaining to different fields interested in utilizing the ever-growing scRNA-Seq data to design similar templates and 
pipelines for the specific cell population.

Keywords: Excel template; Mouse; Myeloid cell types; Central nervous system; Single-cell RNA sequencing; Clusters.

Received: July 04, 2023  |  Revised: August 20, 2023  |  Accepted: September 04, 2023  |  Published online: December 30, 2023

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://crossmark.crossref.org/dialog/?doi=10.61474/ncs.2023.00004&domain=pdf&date_stamp=2023-11-22
https://orcid.org/0000-0002-3889-835X
https://orcid.org/0000-0002-3889-835X
mailto:lhz233003@163.com


Nat Cell Sci 2023;1(2):53–65 
https://doi.org/10.61474/ncs.2023.00004

Nature Cell and Science | www.cellnatsci.com54

tical application, there are often the same or cross markers 
among myeloid cells, which seriously affects the accuracy 
of analysis.8 Therefore, it is necessary to select an effective 
method to distinguish the myeloid cells in the CNS.

Single-cell RNA sequencing (scRNA-Seq) can sequence 
thousands of cells at the single-cell level, and then divide 
the cells into different clusters according to the similarity 
of gene expression.9 However, it is still difficult to further 
define these cell clusters because collecting the cell mark-
ers is a knotty problem for researchers.10 At present, there 
are three main methods for cell type identification based 
on single-cell transcriptome data. First, comparing the up-
regulated genes with the marker genes in the database, 
such as CellMarker (http://xteam.xbio.top/CellMarker/),10 
PanglaoDB (https://panglaodb.se/),11 and the Mouse Cell 
Atlas (http://bis.zju.edu.cn/MCA/gallery.html),12 and then 
identify the cell types in combination with their expression. 
In addition, we can collect marker genes of certain cell types 
in the literature. Second, the expression profiles of genes 
in unknown cell clusters and known cell types are used for 
similarity analysis. If the similarity was high, it would be 
identified as this kind of cell.13,14 For example, the R pack-
age (SingleR) can complete this analysis.15 Third, using the 
expression profiles of known cell types to construct classifi-
ers as the training sets, and the gene expression profiles of 
unknown cell clusters are input for classification and identi-
fication.13,14 For example, the R package (Garnett) can be 
used for this analysis.16 Although more and more automatic 
cell type annotation tools have been developed, it is difficult 
to ensure that an automatic cell type identification tool is 
suitable for all cell types.17 Therefore, researchers should 
select one of the defined results as a reference, and name 
the corresponding cell clusters in combination with manual 
annotation and relevant knowledge background. In any 
case, the specific marker genes are still the basis for defin-
ing cell clusters.13,14 Generally, specific marker genes are 
selected according to the discipline’s background knowl-
edge, literature, and databases. However, distinguishing a 
variety of myeloid cells in the CNS is not easy, because 
of the cross and instability of these cell markers.8 For ex-
ample, adgre1 (F4/80), the established marker for mac-
rophages,18,19 is also expressed in monocytes, microglia, 
and dendritic cells.20 P2ry12 and Tmem119, which are mi-
croglia markers, are often downregulated or even negative 
under the conditions of CNS injury, inflammation, and de-
generation.21,23 So, establishing a simple and practical cell 
type identification method (CTIM) to distinguish these cell 
populations is of great significance.

Material and methods
Excel template design for CTIM
Based on CellMarker (http://xteam.xbio.top/CellMarker/),10 
PanglaoDB (https://panglaodb.se/),11 Mouse Cell Atlas 
(http://bis.zju.edu.cn/MCA/gallery.html), combining with the 
recent pieces of literature,2–4,6,8,19,23–34 a simple Excel tem-
plate for CTIM was designed, in which a panel of gene mak-
ers corresponding to the myeloid cells, lymphocytes, com-
mon CNS cells, and proliferative cells were included (Fig. 
1 and Table S1). Here, myeloid cells included monocytes 
(MNCs), macrophages (MACs), microglia (MG), granulo-

cytes (mainly neutrophils, NEUTs), and dendritic cells (DCs). 
To minimize the effects of lymphocytes on myeloid cell iden-
tities, T, B, and natural killer cell (referred to as NK)-specific 
gene markers were also listed in the table.

Excel template design for gene markers and expres-
sion extraction
To perform the cell identification of a cluster, four Excel 
sheets: cell definition (Figs. 1 and 2e), cluster data (Fig. 2a), 
avg_logFC extraction (Fig. 2b and d), and gene extraction 
(Fig. 2c). In cluster data table, column A was the genes in 
a cluster, and column B was avg_logFC (average Log2 fold 
change), it was the ratio of the normalized mean gene counts 
in each cluster relative to all other clusters for comparison. 
The reason was that the count, transcripts per million, or 
fragments per kilobase of exon model per million mapped 
fragments were usually used, the gene expression value 
must be non-negative, and the value of fold change must 
be positive. When gene A expression was lower than gene 
B, the fold change of B on A was >1, and the fold change of 
log2 was >0; On the contrary, the fold change of log2 was 
<0. Based on this, we could display the upregulated (red) or 
downregulated (green) gene expression with different colors 
in the Excel template. In some reports, the average value of 
gene expression was also used. In the avg_logFC extraction 
table, the data in columns A and B should come from the 
corresponding columns of the cluster data table, column C 
extracted genes from column C of the gene extraction ta-
ble, and column D extracted values from column C using 
the Excel command: VLOOKUP(Cn, A:B,2,0). In the gene 
extraction table, the data in column A were the gene markers 
from column B of the cell definition table, column B was the 
genes from column A of the avg_logFC extraction table, and 
column C was extracted values from column A using Excel 
command: IF(COUNTIF(B:B,An)>0,An,"").

CTIM workflow
The workflow of CTIM included the following steps: (1) Copy 
columns A and B from the cluster data table, and paste them 
to the corresponding columns A and B of avg_logFC extrac-
tion table; (2) Copy column A from avg_logFC extraction ta-
ble, and paste it to the column B of gene extraction table, 
then the extracted genes will be obtained from gene markers 
(column A); (3) Copy column C from gene extraction table, 
and paste as values to the column C of avg_logFC extrac-
tion table, then the extracted values will be shown in column 
D; (4) Copy column D from avg_logFC extraction table, and 
paste as values to any column you like (such as C1, C2, and 
Cn) in the cell definition table; (5) In cell definition table, the 
cell identities can be performed by comparing the extracted 
values (upregulated and downregulated genes are shown as 
red and green, respectively) to the cell types (column A) and 
gene markers (column B). Finally, the cell types were identi-
fied based on the upregulated markers (Fig. 2).

Data
Normalized and clustered data used in this study were ob-
tained from previous studies.12,35–37 The reason for choosing 
these data was they could be directly downloaded, which 
allowed the authors to compare their analysis with the origi-
nal reports. The data are shown in Table 1 and as an Excel 
worksheet in Figure 2a.

http://xteam.xbio.top/CellMarker/
https://panglaodb.se/
http://bis.zju.edu.cn/MCA/gallery.html
http://xteam.xbio.top/CellMarker/
https://panglaodb.se/
http://bis.zju.edu.cn/MCA/gallery.html
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Fig. 1. Excel template design for cell type definitions. A panel of gene markers corresponding to the myeloid cells and lymphocytes were 
included in the template. B, B lymphocyte; DC, dendritic cell; MAC, macrophage; MNC, monocyte; MG, microglia; NK, natural killer cell; NK/T, 
natural killer T cell; NEUT, neutrophil; T, T lymphocyte. P and N indicate positive and negative the gene markers, respectively. If the markers 
could be either positive or negative, we defined them as P/N.
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Statistical analysis
To test the consistency of this CTIM with previous reports, 
the identification results were divided into three grades, ex-
cellent, satisfactory, and poor (Table 2). Bowker’s test and 
kappa symmetric measures were used to test the difference 
and consistency of the paired data between the two groups. 
For Bowker’s test, p < 0.05 was considered to be a statisti-
cally significant difference. For kappa symmetric measures, 
kappa ≥ 0.75 indicated good consistency, 0.4 ≤ kappa < 0.75 
indicated general consistency and kappa < 0.4 indicated 
poor consistency. Data were analyzed with SPSS software 
v.26 (IBM Corp., Armonk, NY, USA).

Results
Descriptive comparison of the CTIM with the literature 
in CNS myeloid cells
Using the CTIM, CNS myeloid cells in four data sources 
reported in the literature were identified (Table 1).12,35–37 
In supplementary Table 3 of Ximerakis et al.,35 the authors 
listed the most discriminating genes per cell type. From that 
table, MNCs, MACs, MG, NEUTs, DCs, neuronal-restricted 

precursors (NRPs), immature neurons, mature neurons, 
astrocyte-restricted precursors, astrocytes, oligodendrocyte 
precursor cells, oligodendrocytes, ependymocytes, and hy-
pendymal cells were chosen as gold standard cells to test 
the CTIM. As shown in Figure 3, Table 3, and Figure S1, of 
the 14 cell clusters, MNCs were identified as mixed with a 
few NEUTs and DCs, and NRPs as proliferative cells. The 
other 12 cell clusters were completely consistent.

Table 4 shows the results of the comparison of cell types 
identified in adult mouse brains. Fifteen clusters of adult 
mouse brains from Han et al.12 were identified. In the 15 
cell clusters, pan-GABAergic and Schwann cells were not 
in the CTIM, the reported cluster 4 (Macrophage_Klf2 high) 
was mixed with a few MG, and the other 12 cell clusters 
were completely consistent. The CD11b+CD45+CD3−B220-

Ly6G− cells isolated using fluorescence-activated cell sort-
ing from adult mouse brain parenchyma, choroid plexus, 
leptomeninges, and perivascular space (embj2021108605-
sup-0008-datasetev1) by Sankowski et al.36 were com-
pared. As shown in Table 5, in the 17 cell clusters, 14 were 
completely consistent. The nonconsistent clusters includ-
ed cluster 15 because it included stromal cells, which was 
not in our table. The reported cluster 6 (CNS-associated 
macrophages, CAMs) may have been Kolmer epiplexus 

Fig. 2. Excel template and CTIM workflow. (a) Cluster data to be analyzed. (b) avg_logFC extraction. (c) Gene extraction. (d) Value extrac-
tion. (e) Cell definition: Column L, M and N mean any column (such as C1, C2, and Cn).
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cells that are reported to express microglial markers, and 
cluster 9 (CAMs), genes expressed in MACs were not in-
creased.34

We encountered some thorny problems when analyzing 
the data of Mimouna et al.37 In that data source, Louvain 
graph-based community clustering was used to divide the 
cells into clusters, and PanglaoDB was used to identify puta-
tive cell and/or activation state for each individual Louvain 
cluster. The cell types identified using CTIM are shown in 
Table 6. Although the results were basically consistent, the 
cell types were mixed, which indicated that the cell clustering 
for this data was not perfect.

Comparison of the CTIM with the literature in peripheral 
blood and bone marrow myeloid cells
To test the identification of non-CNS myeloid cells by CTIM, 
21 peripheral blood cell clusters and 17 bone marrow cell 
clusters of adult mice from Han et al.12 were employed. 
Table 7 shows the peripheral blood results. Of the 21 cell 
clusters, cluster 14 (Erythroblast_Car2 high), cluster 20 
(B cell_Igha high), and cluster 21 (Erythroblast_Hba-
a2 high) were not in the table. The reported cluster 18 

(Macrophage_Pf4 high) included a few NEUTs, the other 
17 cell clusters were completely consistent. The bone mar-
row results are shown in Table 8. Of the 17 cell clusters, 
cluster 3 (neutrophil progenitors), cluster 8 (hematopoietic 
stem progenitor cells), cluster 9 (erythroblasts), and cluster 
15 (mast cells) were not in the table, the other 14 cell clus-
ters were completely consistent.

Results of the CTIM compared with the published litera-
ture
According to the grading evaluation method in Table 2, the 
results of all data analysis (Tables 3–8) were evaluated. Ex-
cluding those clusters that are not within the scope of the 
analysis (N/A), a total of 83 valid cases were obtained. As 
shown in Table 9, excellent, satisfactory, and poor results 
in previous studies were 74, 3, and 6, respectively. Corre-
spondingly, they were 77, 1, and 5 in the results of CTIM. 
The overall consistency rate was 93.98% (78/83). Bowker’s 
test showed that there was no significant difference between 
the two groups (p > 0.05). Kappa symmetric measures 
showed that the kappa value was 0.642 (p < 0.01), indicat-
ing general consistency.

Table 2.  Grade evaluation criterion of cell type identities

Consistency Accuracy Grade
Consistent Both completely accurate Both excellent (A)

Both partially accurate Both satisfactory (B)
Neither is accurate Both poor (C)

Nonconsistent One is completely accurate Excellent (A)
One is partially accurate Satisfactory (B)
One is not accurate Poor (C)

Table 3.  Comparison of cell types identified with data from Ximerakis et al35

Cluster Reported 
cell type Our cell type Consistency Reason

MNC MNC MNC (mixed with a few NEUT and DC) Part Plac8 is also expressed in NEUT and DC
MAC MAC MAC Yes NR
MG MG MG Yes NR
NEUT NEUT NEUT Yes NR
DC DC DC Yes NR
NRP NRP Proliferative cells NA Not within the scope of our evaluation.
ImmN ImmN Neuron Yes NR
mNEUR mNEUR Neuron Yes NR
ARP ARP AST Yes NR
AST AST AST Yes NR
OPC OPC OPC Yes NR
OL OL OL Yes NR
EPC EPC Ependymal Yes NR
HypEPC HypEPC Ependymal Yes NR

ARP, astrocyte-restricted precursor; AST, astrocyte; DC, dendritic cell; EPC, ependymocyte (a kind of ependymal cell); HypEPC, hypendymal cell (a kind of ependymal cell); ImmN, 
immature neuron; MAC, macrophage; MG, microglia; MNC, monocyte; mNEUR, mature neuron; NA, not available; NEUT, neutrophil; NR, not relevant; NRP, neuronal-restricted 
precursor; OL, oligodendrocyte; OPC, oligodendrocyte precursor cell.
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Discussion
For the last few decades, many advanced techniques, such 
as immunohistochemistry, flow cytometry, etc. have been 
used to identify CNS myeloid cell-subtypes. However, ow-
ing to the lack of absolutely specific markers and unstable 
expression of biomarkers under different pathophysiological 
conditions, their accuracy is still not satisfactory.8 Although, 
scRNA-Seq is a promising new technology to solve this 
problem, for ordinary researchers, various programming 
language analysis packages for scRNA-Seq data are not 
an easy task, and bioinformatics experts do not necessarily 

know the specific markers of CNS myeloid cell-subtypes.9 
Therefore, building a bridge to connect the knowledge gap 
between ordinary researchers and bioinformatics experts is 
important.

In this study, a Microsoft-Excel template was designed, 
in which a panel of gene makers corresponding to myeloid 
cells, lymphocytes, common CNS cells, and proliferative 
cells were included. For users, as long as the gene expres-
sion data of cell clusters are obtained, the clusters can be 
named directly using this Excel template. It should be em-
phasized that the template is mainly suitable for determining 

Fig. 3. Representative results and heatmap of cell type identification by CTIM. MNC, MAC, MG, NEUT, DC, NRP, ImmN, mNEUR, ARP, 
AST, OPC, OLs, EPC, and HypEPC by Ximerakis, et al.35 were used to test cell type identification Excel template and seurat package. Of the 
14 cell clusters, MNC was identified as MNC (mixed with a few NEUTs and DCs), and NRP as proliferative cells. The other 12 cell clusters 
were completely consistent. The gene expression levels were showed as Log2 Fold Change. Upregulated genes are shown in red (>0), and 
downregulated genes in green (<0). The depth of color respectively indicates the extent of up or downregulation. If the genes were not found 
in Cluster data, they would be shown as “N/A”. ARP, astrocyte-restricted precursor; AST, astrocyte; CTIM, cell type identification method; DC, 
dendritic cell; EPC, ependymocyte; HypEPC, hypendymal cell; ImmN, immature neuron; MAC, macrophage; MG, microglia; MNC, monocyte; 
mNEUR, mature neuron; NEUT, neutrophil; NRP, neuronal-restricted precursor; OL, oligodendrocyte; OPC, oligodendrocyte precursor cell.
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Table 4.  Comparison of the cell type identified in adult brain with data from Han et al12

Cluster Reported cell type Our cell type Consistency Reason
1 Myelinating oligodendrocyte OL Yes NR
2 Microglia MG Yes NR
3 Astrocyte_Mfe8 high AST Yes NR
4 Macrophage_Klf2 high MAC/MG Part The reported cluster 4 was 

mixed with a few MG
5 Astrocyte_Atp1b2 high AST Yes NR
6 Oligodendrocyte precursor cell OPC Yes NR
7 Neuron Neuron Yes NR
8 Macrophage_Lyz2 high MAC Yes NR
9 Astroglial cell (Bergman glia) AST Yes NR
10 Pan-GABAergic Proliferative cells NA Not within the scope of our evaluation.
11 Astrocyte_Pla2g7 high AST Yes NR
12 Schwann cell Unknown NA Not within the scope of our evaluation.
13 Granulocyte_Il33 high NEUT Yes NR
14 Hypothalamic ependymal cell Ependymal cells Yes NR
15 Granulocyte_Ngp high NEUT Yes NR

AST, astrocyte; DC, dendritic cell; MAC, macrophage; MG, microglia; MNC, monocyte; NA, not available; NEUT, neutrophil; NR, not relevant; OL, oligodendrocyte; OPC, oligoden-
drocyte precursor cell.

Table 5.  Comparison of the cell type identifies with data from Sankowski et al36

Cluster Reported cell type Our cell type Consistency Reason
C0 MG MG Yes NR
C1 CAMs MAC Yes NR
C2 MG MG Yes NR
C3 CAMs MAC Yes NR
C4 CAMs MAC Yes NR
C5 MG MG Yes NR
C6 CAMs MG No The expression of typical genes of MAC including 

Mrc1, Cd163, Lyve1, Pf4, Ms4a7, Stab1, and 
Cbr2 were not elevated. In contrast, MG-
specific markers Hex, Olfml3, and Sparc were 
significantly elevated. This might be Kolmer 
perplexes cells that are reported to express 
“microglial markers” (Van Hove et al., 2019)34

.C7 CAMs MAC Yes NR
C8 Ly6clow monocytes MNC Yes NR
C9 CAMs Unknown NA The expression of typical genes of MAC including 

Mrc1, Cd163, Lyve1, Pf4, Ms4a7, Stab1, and 
Cbr2 were not elevated. The other genes 
were not within the scope of our evaluation.

C10 MG MG Yes NR
C11 Ly6chi monocytes MNC Yes NR
C12 DCs DC Yes NR
C13 CAMs MAC Yes NR
C14 Proliferating. cells Proliferating cells Yes NR
C15 Stromal cells Unknown NA Not within the scope of our evaluation.
C16 Lymphocytes NK Yes NR

CAMs, central nervous system (CNS)-associated macrophage; DC, dendritic cell; MAC, macrophage; MG, microglia; MNC, monocyte; NA, not available; NEUT, neutrophil; NK, 
natural killer cell; NR, not relevant.
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the major categories of myeloid cells. If researchers need 
to further distinguish the subtypes of certain cells, it is only 
needed to add corresponding gene markers. This Excel 
template is open source, and researchers can modify or add 
new genes based on their needs (Table S1). For the selec-
tion of gene markers, we considered not only the relative 
specificity but also the crossover and commonality of differ-
ent cells. In the Excel template, the letters P and N mean the 

gene markers are positive or negative. If the markers are 
positive or negative, they are defined as “P/N” (Fig. 1). For 
example, Ptprc (the gene of CD45) is a common marker of 
myeloid cells and lymphocytes.38–40 It was used as a com-
mon marker of myeloid cells and lymphocytes to distinguish 
CNS nonmyeloid cells (astrocytes, oligodendrocytes, neu-
rons, etc.). In addition, in theory, the protein molecule CD45 
expressed by Ptprc gene is positive in many leukocytes, 

Table 6.  Comparison of the cell type analysis with data from Mimouna et al37

Cluster Reported cell type Our cell type Consistency Reason
C1 MAC/MG/others MAC/MG/others Yes Cell clustering was not ideal.
C2 MAC/MG/NEUT MAC/MG/NEUT Yes Cell clustering was not ideal
C3 MNC/MAC/MG MAC/MG/NEUT Part Cell clustering was not ideal
C4 MAC/MG/NEUT MAC/MG/NEUT Yes Cell clustering was not ideal
C5 MNC/MAC MAC/MG/NEUT Part Cell clustering was not ideal
C6 NEUT MAC/MG/NEUT Part Cell clustering was not ideal
C7 MAC/MG/others MAC/MG/NEUT Yes Cell clustering was not ideal
C8 T/others MAC/MG/NEUT Part Cell clustering was not ideal
C9 MNC/MAC MAC/MG/NEUT Part Cell clustering was not ideal

MAC, macrophage; MG, microglia; MNC, monocyte; NEUT, neutrophil.

Table 7.  Comparison of the cell type identified in peripheral blood with data from Han et al12

Cluster Reported cell type Our cell type Consist-
ency Reason

1 T cell_Trbc2 high T Yes NR
2 B cell_Ly6d high B Yes NR
3 Macrophage_S100a4 high MAC Yes NR
4 Neutrophil_Retnlg high NEUT Yes NR
5 Neutrophil_Ltf high NEUT Yes NR
6 Neutrophil_Camp high NEUT Yes NR
7 Neutrophil_Il1b high NEUT Yes NR
8 NK cell_Gzma high NK Yes NR
9 Macrophage_Ace high MAC Yes NR
10 Monocyte_Elane high MNC Yes NR
11 B cell_Vpreb3 high B Yes NR
12 Monocyte_F13a1 high MNC Yes NR
13 T cell_Gm14303 high T Yes NR
14 Erythroblast_Car2 high Proliferative cells NA Not within the scope of our evaluation.
15 B cell_Rps27rt high B Yes NR
16 Dendritic cell_Siglech high DC Yes NR
17 Basophil_Prss34 high Unknown NA NA
18 Macrophage_Pf4 high MAC/NEUT Part The reported cluster 18 was mixed with a few NEUT.
19 B cell_Igha high Unknown NA Not within the scope of our evaluation.
20 Macrophage_Flt-ps1 high MAC Yes NR
21 Erythroblast_Hba-a2 high Unknown NA Not within the scope of our evaluation.

B, B cell; DC, dendritic cell; MAC, macrophage; MG, microglia; MNC, monocyte; NA, not available; NEUT, neutrophil; NK, natural killer cell; NR, not relevant; T, T cell.
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but in the process of collecting gene markers and drawing 
the Excel template, we found that Ptprc gene was not ex-
pressed in every cell cluster, so it was defined as P/N. In ad-
dition to Ptprc, there were many similar examples (see Fig. 
1 and Table S1 for details). For a certain cell, although there 

are some relatively specific gene markers, a panel of gene 
markers was still used to comprehensively evaluate and 
then define them. This could effectively distinguish the cell 
types with similar or cross gene expression and ensure the 
accuracy of cell cluster identification. In this Excel template, 

Table 8.  Comparison of the cell type identified in bone marrow with data from Han et al12

Clus-
ter Reported cell type Our cell type Consist-

ency Reason

1 Neutrophil_Cebpe high NEUT Yes NR
2 Neutrophil_Mmp8 high NEUT Yes NR
3 Neutrophil progenitor MNC/MAC/NEUT NA Not within the scope of our evaluation.
4 Monocyte_Prtn3 high MNC Yes NR
5 Macrophage_Ms4a6c high MAC Yes NR
6 Neutrophil_Ngp high NEUT Yes NR
7 Prepro B cell B Yes NR
8 Hematopoietic stem progenitor cell Unknown NA Not within the scope of our evaluation.
9 Erythroblast Proliferative unknown cell NA Not within the scope of our evaluation.
10 Neutrophil_Fcnb high NEUT Yes NR
11 B cell_Igkc high B Yes NR
12 Macrophage_S100a4 high MAC Yes NR
13 T cell_Ms4a4b high T Yes NR
14 Dendritic cell_Siglech high DC Yes NR
15 Mast cell Unknown NA Not within the scope of our evaluation.
16 Dendritic cell_H2-Eb1 high DC Yes NR
17 Monocyte_Mif high MNC Yes NR

B, B cell; DC, dendritic cell; MAC, macrophage; MG, microglia; MNC, monocyte; NA, not available; NEUT, neutrophil; NK, natural killer cell; NR, not relevant; T, T cell.

Table 9.  Bowker’s test and kappa symmetric measures of literature and our results

Studies * CTIM crosstabulation

Grading
Grading (CTIM)

Total
A (excellent) B (satisfactory) C (poor)

Grading (studies) A 73 1 0 74
B 3 0 0 3
C 1 0 5 6

Total 77 1 5 83

Bowker’s test
Statistic Value Degree of freedom Approximate significance(2-sided)
Bowker’s test 2.000 2 0.368
Valid cases, n 83

Symmetric measures
Statistic Value Asymptotic standardized errora Approximate Tb Approximate significance
Measure of agreement kappa 0.642 0.146 7.200 0.000
Valid cases, n 83

aNot assuming the null hypothesis; bUsing the asymptotic standardized error assuming the null hypothesis. CTIM: cell type identification method
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there were 73 gene markers (excluding nonmyeloid CNS 
cells) in each panel that could be used to distinguish my-
eloid cell-subtypes and lymphocytes (Fig. 1). For example, 
MNC could express Ptprc (P/N), Cd14 (P/N), Itgam (P/N), 
Itgax (P/N), Csf3r (P/N), Adgre1(P/N), Ly6c1 (P/N), S100a4 
(P/N), Cd68 (P), Ly86 (P/N), Ctsb (P/N), Ccr2 (P/N), Ly6c2 
(P), Plac8 (P), Pf4 (P/N), Lyz1 (P), Hmox1 (P/N), F13a1(P), 
Lyst (P/N), Prtn3 (P/N), Elane (P/N), and Pilra (P/N). Al-
though several molecules (Cd68, Ly6c2, Plac8 and Lyz1) 
are positive (P) in MNC, they are also expressed in other 
cells. So, there were no absolute specific markers of MNC 
in this template. Nevertheless, we could still determine its 
cell type using comparative analysis. For those cell types 
with their own specific gene markers, it was easy to identify 
cell clusters using comparative analysis. Typical examples 
were Ms4a7, Lyve1, Cbr2, Mrc1, and Cd163 for MAC; Hexb, 
Olfml3, Sparc, Tgfbr1, P2ry12, and Tmem119 for MG; Ltf, 
Ly6g, Mmp8, Camp, Ngp, Fcnb, Cebpe, Retnlg, S100a8, 
S100a9, Lcn2, G0s2, Wfdc21 for NEUT. Of course, because 
of limitations of knowledge background and research level, 
this Excel template still has some defects. For example, for 
DCs, the expressions of H2-Ab1, H2-Eb1, H2-Aa, Cd74, and 
Cd209a should be positive, but these markers can also be 
expressed in MAC and B cells, especially B cells, are not 
myeloid cells, which is easy to result in misidentification. In 
this template, B cell markers were also added to facilitate dis-
tinguishing B cells from DC. In addition, it should be aware of 
Kolmer epiplexus cells which were reported to express “mi-
croglial markers” like P2ry12 as well.34–40 Kolmer epiplexus 
cells, first reported by Kolmer in 1921, are a population of 
macrophages that attach to the ventricle-facing surface of 
the choroid plexus.41,42 The gene transcription of these cells 
is more consistent with microglia than nonparenchymal mac-
rophages. In addition, Kolmer epiplexus cells have the same 
ontogenetic and self-renewal ability as microglia, so they 
are considered a nonparenchymal microglia subtype.34,41 
Therefore, we should be careful with the interpretation and 
definition of microglia and macrophages when encountering 
suspected Kolmer epiplexus cells. For example, in the clus-
ter 6 of Table 5, the typical gene markers of MAC, including 
Mrc1, Cd163, Lyve1, Pf4, Ms4a7, Stab1, and Cbr2, were not 
increased. In contrast, MG specific markers, Hexb, Olfml3, 
and Sparc, were significantly increased. This might be identi-
fied as Kolmer epiplexus cells.

Compared with the findings of Ximerakis et al.,35 only one 
cluster was inconsistent (Table 3). Our results showed that 
there were a few NEUT and DC mixed with their MNC. The 
possible reason was that they took Plac8 as a specific marker 
of MNC. In fact, Plac8 is also expressed in NEUT and DC.12 
Compared with Han et al.,12 in the cell type identified of adult 
brain, the cluster 4 was inconsistent (Table 4). The reason 
may be that the reported cluster 4 was mixed with a few MG, 
because we could find the typical microglia markers (Hexb, 
Olfml3, Sparc, Tgfbr1, P2ry12, and Tmem119). Compared 
with the findings of Sankowski et al.,36 the clusters 6 and 9 
were inconsistent (Table 5). Both clusters were identified as 
CAMs, however, the expression of typical genes of MACs 
(Mrc1, Cd163, Lyve1, Pf4, Ms4a7, Stab1, and Cbr2) was not 
increased in both clusters. In contrast, MG specific markers 
(Hexb, Olfml3, and Sparc) were significantly increased in clus-
ter 6, while the other genes in cluster 9 were not in our table. 
Comparing with the cell type identified in peripheral blood and 

bone marrow of Han et al.,12 excepting cluster 18 of peripheral 
blood was mixed with a few NEUT, the others were completely 
consistent. These indicated that our Excel template was also 
very effective for the analysis of non-CNS myeloid cells.

From the above analysis, it can be deduced that the ap-
propriate gene markers and ideal scRNA-Seq data clustering 
are key factors for the accuracy of cell definition. The impor-
tance of cell clustering can be understood by the following 
example. When the data reported by Mimouna et al.37 were 
analyzed, both the reported and the CTIM were not ideal. 
Analyzing the reasons, it was found that their data clustering 
methods were different from those used in other studies. The 
cell clustering method in this literature was Louvain graph-
based community clustering, which may be the reason why 
the clustering was not ideal. Although this Excel template 
still could be used to identify the cell types based on the 
author’s data, the cell types in each of the nine clusters were 
mixed (Table 6). Therefore, the data used in this Excel tem-
plate should be processed through the standard scRNA-Seq 
analysis process, including quality control, standardization, 
data correction, feature selection, and data dimensionality 
reduction, finally, the cells were divided into different clusters 
according to the similarity of gene expression.

Conclusions
The Excel template can be a bridge to span the knowledge 
gap between ordinary researchers and bioinformatics ex-
perts. For ordinary researchers without a foundation in com-
puter language programming, it can easily distinguish my-
eloid cell-subtypes and nonmyeloid cells by using a panel of 
gene markers for cell clustering data of CNS. For bioinfor-
matics experts, it is also a valuable reference for selecting 
gene markers. It will also encourage researchers pertaining 
to different fields interested in utilizing the ever-growing scR-
NA-Seq data to design similar templates and pipelines for 
their specific cell population.
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Table S1. Excel template design for CTIM.

Fig. S1. Visual gene expression heatmap of Figure 3. The 
results of Figure 3 were extracted and used to create a sep-
arate heatmap. Upregulated genes are shown in red (>0). 
Downregulated genes are shown in green (<0). Depth of 
color indicates the extent of upregulation or downregulation.
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