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Introduction
Neurons can receive external and/or internal stimuli as well 
as conduct nerve impulses. In addition, specific neuroinju-
ries can interrupt the critical connections. Some glial cells, 
such as Schwann cells and/or oligodendrocytes, can wrap 
around neural axons to form myelin structures, which can 
protect neurons and/or facilitate the conduction of impulses. 
Glial cells have potassium channels that respond to extra-
cellular changes such as pH variations. Meanwhile, astro-
cytes are a diverse class of glial cells restricted to the central 
nervous system. Peripheral nerve injuries often arise from 
a consequence of inflammatory and/or traumatic reasons, 
resulting in heavy social burdens,1 which are unfortunately 
often associated with poor recovery.2 Prolonged periods of 
denervation may decline the capability for axon regeneration. 
Interestingly, it has been shown that the roles of the corneal 
axon-ensheathing Schwann cells may be critical in homeo-
static corneal epithelial cell renewal.3 The mechanism may 
be relevant to the activation of the phosphoinositide 3-kinase 
(PI3K)/AKT/phosphatase and tensin homolog signaling path-
way.4 The cornea is innervated by the ophthalmic branch of 
the trigeminal nerve, entering the cornea at the limbus and 
penetrating into the corneal epithelium, which is considered 
to be responsible for the activation of tearing and blink reflex-

es and repair. In general, the corneal sensory nerves protect 
the cornea from injury. When the protective corneal sensory 
innervation is lost after infection, trauma, and/or intracranial 
tumors, permanent blindness would occur via the repetitive 
microtraumas that induce opacification of the cornea, which 
is known as neurotrophic keratopathy and is increasing 
worldwide.5 Recombinant human nerve growth factor (NGF) 
can be applied for the treatment of this neurotrophic kera-
topathy; however, it is not effective in all patients.6

It has been reported that there are biological mechanisms 
capable of assisting natural retrieval within the nervous sys-
tem.7 In particular, severe nerve injuries may require embed-
ding material as a scaffold to guide neuroregeneration.8 Ac-
cordingly, it is important to explore better treatments capable 
of encouraging nerve regeneration to accept the repair of 
function. A series of neurotrophic growth-inducing factors, 
such as NGF, brain-derived neurotrophic factor, glial cell 
line-derived neurotrophic factor, and vascular endothelial 
growth factor, are secreted by glial cells to encourage the 
survival of neurons.9 Additionally, Schwann cells are stimu-
lated by an advanced myelinating condition to a repairable 
phenotype.10,11 In this situation, some Schwann cells may 
fail to come into contact with the adjacent axons, thus re-
sulting in fundamental alterations of the neuron signaling 
environment. This exceptional feature of Schwann cells can 
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provide a forceful regeneration ability within nerves (Fig. 1).
Once engaged as scaffolds for regenerative treatment, 

natural biomaterials might be better than artificial polymers, 
which have been utilized to make intricate supports such as 
several organ scaffolds. Bionic nerve scaffolds are able to 
provide a suitable microenvironment for nerves. As structural 
reconstruction may play a significant role in nerve repair,12,13 
certain signaling pathways can influence the recruitment, 
adhesion, and migration of glial cells based on the situation 
of nerve tissues.14 Consequently, extracellular matrix-based 
nerve regenerative medicines for repairing nerve injury and/
or neuroprotection have been increasingly studied.15 In par-
ticular, bioscaffolds can be used to keep the best bioelastic-
ity and mechanical properties to improve the adhesion, dif-
ferentiation, and proliferation of neuronal cells in addition to 
the enhanced repair of nerve injuries.16 However, existing 
neuronal biomaterials are incompletely effective in treating 
peripheral nerve injuries.17 Although effective repair of the 
nervous system has been broadly explored, it is still impera-
tive to develop better-quality bioscaffolds.

PI3K/AKT signaling pathway in Schwann 
cells is associated with autophagy and neu-
ral regeneration
Autophagy is a significant process that breaks down proteins, 
lipids, and organelles, and it also plays an important role in 

maintaining homeostasis via adjusting molecular activities in 
response to various stresses.18 A growing number of inves-
tigations have recognized the key role of autophagy in con-
trolling cell migration, with varied functions in different cell 
types.19 Under stress conditions, autophagy may play either a 
cytotoxic or a cytoprotective role in cellular homeostasis and 
survival.20 In the context of neuroregeneration, autophagy 
also may be crucial in the remodeling of synaptic elements to 
maintain neuronal function.20 The autophagy process, includ-
ing initiation, progression, and termination, is modulated by 
the mammalian/mechanistic target of the rapamycin (mTOR) 
signaling pathway.21 The mTOR signaling pathway is also in-
volved in regulating cell growth, proliferation, and life span.22 
In addition, enhancing autophagy exhibits a crucial role in reg-
ulating the migration of Schwann cells after several nerve in-
juries.23 For example, it has been reported that attenuation of 
neuronal apoptosis in traumatic brain injury can be achieved 
by supporting autophagy through the PI3K/AKT pathway,24 
which is an upstream pathway of mTOR signaling. In general, 
the PI3K/AKT/mTOR signaling pathway has been shown to 
be involved in the control of autophagy (Fig. 2).25 Therefore, 
the PI3K/AKT/mTOR pathway plays important roles in con-
trolling cell differentiation, proliferation, survival, metabolism, 
and autophagy of stem cells.26 Moreover, the PI3K/AKT/
mTOR signaling pathway may also play an indispensable role 
in preserving cell stability by declining the expression of ap-
optosis-related molecules such as caspase-3 in neurons. Au-
tophagy seems to be predominantly repressed via the PI3K/

Fig. 1. Schematic demonstration of nerve regeneration after nerve injury. The axon and myelin sheath in the distal stump may degener-
ate after nerve injury. The mature myelinating Schwann cells dedifferentiate into immature Schwann cells and proliferate. The fragmentation of 
axons and myelin that occurs at the injury site may induce the dedifferentiation of Schwann cells. Immune cells including macrophages migrate 
to the site of the lesion, and Schwann cells with the proliferating repairable phenotype can remove myelin debris. After the debris has been 
removed, dedifferentiated Schwann cells contribute to guide axonal sprouting to support axon regeneration. Note that some critical pathways 
have been omitted for clarity.
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AKT/mTOR signaling pathway.27 In contrast, metformin has 
been demonstrated to increase the level of autophagy and to 
prevent the migration of several precursor cells via activation 
of the PI3K/AKT/mTOR pathway (Fig. 2).28

Recent investigations have shown that autophagy com-
prises the phagocytosis of myelin, suggesting that disorders 
of autophagy may impair myelin clearance.29 Interestingly, 
resveratrol promotes recovery from sciatic nerve crush injury 
by accelerating the myelin clearance process by promoting 
autophagy of Schwann cells.30 Peripheral nerve regeneration 
may be thoroughly related to the removal of damaged myelin 
by Schwann cells, which results in Schwann cell-mediated 
autophagy as a neuroprotective role for repairing damaged 
neurons.29 The effective removal of injured myelin sheaths is 
indispensable for certifying remodeling or the functional recov-
ery of neurons succeeding several peripheral nerve injuries. 
Accordingly, a deficiency of Schwann cell autophagic activity 
might result in the significant scar formation of nerves. Further-
more, modulating autophagy can be a powerful approach for 
improving nerve function from the outcomes of neuroinjury.31 
As mentioned above, Schwann cells can promote the survival 
of damaged neurons and/or axon regeneration by activating 
the PI3K/AKT pathway, which may also offer effective strate-
gies for the treatment of ischemic stroke.32 The coculture of 
Schwann cells and endothelial cells can stimulate the release 
of NGF and vascular endothelial growth factor for the develop-

ment of nerve grafts in nerve regeneration via the PI3K/AKT 
pathway.33 Additionally, the specific PI3K/AKT signaling path-
way in Schwann cells may be necessary for the development 
of neuromuscular junctions.34 Moreover, regulation of the PI3K/
AKT signaling pathway may serve as a potential therapeutic 
target for the treatment of diabetic peripheral neuropathy.35,36

Certain bioscaffolds can support the roles of 
Schwann cells
After nerve injury, the injured axons can become distorted 
and the myelin sheath can crumble.37 In some features of 
nerve regeneration, Schwann cells can play a fundamental 
part in the nerve regeneration process. Simultaneously, the 
stimulated Schwann cells can initiate to elongate and ar-
range in a line within the residual endoneurial tube to create 
specific bands, which can provide a pathway for the growth 
direction of regenerating axons.38,39 Following axonal regen-
eration, Schwann cells can wrap around the new axons to 
renovate myelin sheaths. The stimulated Schwann cells can 
participate in the removal of cellular debris, which can assist 
myelination through the achievement of autophagy.40 Some 
myelinating Schwann cells also can be employed to support 
myelin repair after nerve injury.41 In the central nervous sys-
tem, oligodendrocyte precursor cells can differentiate into re-
myelinating Schwann cells in response to nerve injury and/or 
demyelination.42 Therefore, neuron regenerative medicine 
should aim to advance the potential of spontaneous remy-
elination for the most wanted nervous system.43 Without my-
elin sheath repair, further neurodegeneration will take place. 
It is likely that primary remyelination would spontaneously 
occur upon nerve injury in healthy individuals. However, a 
biological intervention that encourages remyelination can 
have an indispensable impact on a patient’s life by inhib-
iting extra neurodegeneration. Once nerve injury occurs, 
Schwann cells are critically involved in several stages of the 
following regenerative processes. A noteworthy challenge in 
this field may be how to reconstruct the microenvironment of 
the Schwann-cell/oligodendrocyte/axon interaction. Recent 
progress in this research field related to the elucidation of 
the intrinsic mechanism of nerve repair has augmented the 
focus on the design of scaffold materials that can promote 
the microenvironment and/or the repair processes.44 Con-
sequently, some engineered scaffolds with neuronal grafts/
cells have been reported to successfully work as an ideal 
scaffold to promote axon regeneration after segmental nerve 
defects.45 For example, the ability of scaffolds to sustain 
neuronal health at an appropriate time point has been shown 
to maintain the regenerative capacity to enhance the extent 
of recovery.45 Some scaffolds also can provide continuous 
regeneration-related neurotrophic factors that support re-
generating axons to assist their functional recovery (Fig. 3).

In contrast to axons in the central nervous system, dam-
aged peripheral nerves have demonstrated the capacity to 
regenerate neurons mainly due to the helpful population of 
Schwann cells, which are the major glial cells in the periph-
eral nervous system. Schwann cells have a unique ability to 
myelinate axons, which can also promote nerve regenera-
tion by discharging several neurotrophic factors.46 In addi-
tion, Schwann cells play a significant role in peripheral nerve 
restoration not only in the clearance of myelin sheath debris 
but also in the remyelination of axons and/or their adhe-

Fig. 2. Several modulator molecules linked to the PI3K/AKT/
mTOR signaling pathway for the regulation of autophagy. A few 
example compounds known to act on autophagy are also shown. 
The arrowheads indicate stimulation, whereas hammerheads show 
inhibition. Note that several important molecules have been omit-
ted for simplicity. AC, adenylyl cyclase; PDK1, phosphoinositide-
dependent kinase-1; PI3K, phosphoinositide-3 kinase; PKA, protein 
kinase A; AMPK, adenosine monophosphate-activated protein ki-
nase; mTOR, mammalian/mechanistic target of rapamycin; PTEN, 
phosphatase and tensin homolog deleted on chromosome 10.
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sion.47,48 The basement membrane constructed by Schwann 
cells enables the attachment of axons and Schwann cells 
via the extracellular matrix proteins such as fibronectin and/
or laminin, encouraging further neurite outgrowth.49 On the 
other hand, myelinating Schwann cells also can provide sev-
eral neurotrophic factors such as brain-derived neurotrophic 
factor and/or NGF in addition to the receptors of these fac-
tors, which are indispensable for the elongation of axonal 
growth after nerve injury. In other words, matrix proteins can 
provide an adhesive element for axons to Schwann cells, 
while neurotrophic factors can enhance nerve regenera-
tion.50 Accordingly, establishing a certain microenvironment 
through the effect of neurite outgrowth-promoting factors is 
essential for nerve regeneration. Nerve regeneration fails 
without either appropriate neurite outgrowth and/or neuro-
trophic factors, which also suggests that a crucial relation-
ship between growth-promoting matrix and neurotrophins 
is required for complete nerve regeneration. Schwann cells 
play an important role in driving axon elongation by forming 
aligned tubular guidance structures, which promptly arise in 
distal nerve segments.51 However, Schwann cells may fre-
quently fail to interlope large-gap scaffolds, thus resulting in 
poor outcomes. Therefore, the development of additional 
connecting strategies is needed to induce the full neurore-
generative ability within Schwann cells.51

The concept of bioscaffolds for superior neu-
roregeneration with mesenchymal stem cells 
or Schwann cells
Although therapeutic efficacy is compromised by inefficient 

cell delivery, the transplantation of mesenchymal stem 
cells and/or Schwann cells has been shown to be a favora-
ble therapy using regenerative medicine for several nerve 
injuries. In this procedure, the mechanical processability 
of various synthetic polymers such as polyethylene glycol 
(PEG) might play an essential role in scaffold preparation 
for the transplantation, which should be investigated for dif-
ferent constructions such as aligned microfibers to regulate 
the activities of mesenchymal stem cells and/or Schwann 
cells. An ideal material should match the properties of the 
target nerve circumstances. In the pursuit of an effective 
nerve tube, various physical and biological strategies have 
been employed.52 For superior neuroregeneration, specific 
bioscaffolds with the capability of physical, chemical, and/or 
biological support to neuronal cells including stem cells and/
or Schwan cells are indispensable (Fig. 3).

Collagen scaffolds have increased the retention of mes-
enchymal stem cells in the lesion site. In addition, more 
mesenchymal stem cells have been identified in the site 
when transplanted with collagen scaffolds, resulting in su-
perior neural functional recovery. It also has been suggested 
that collagen scaffolds can support the survival of grafted 
stem cells and/or Schwann cells.53 The collagen provides 
local physical retention, mimics the extracellular scaffold, 
provides physical cues for cell spreading, and supports the 
survival of grafted stem cells,53 thus providing an appropri-
ate microenvironment to maintain cell attachment and/or cell 
proliferation. In fact, collagen scaffolds support the survival 
and differentiation of grafted cells, suggesting that the com-
bination of mesenchymal stem cells and collagen scaffolds 
might be a prominent therapeutic treatment for brain injury.53 
Moreover, collagen may provide a favorable environment for 

Fig. 3. Schematic demonstration of superior nerve regeneration with special bioscaffolds. These bioscaffolds have potential as physical, 
chemical, and biological supports to repair cells. Certain bioscaffolds can additionally promote the remyelination of Schwann cells, which can 
be used as a conductive platform for neural tissue engineering. Example materials suitable for a bioscaffold also are shown. Note that several 
important activities such as inflammatory reactions have been omitted for simplicity.
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nerve cells. For example, differentiation of PC12 cells and 
mouse neural stem cells has shown decent elongation and/
or alignment of neurite outgrowth in collagen.54 Additionally, 
the PI3K/AKT pathway has been demonstrated to be a sign-
aling mediator of collagen in Schwann cells.55

Gelatin methacrylate-based hydrogels are also gaining 
much attention as possibly good implantable tools for tissue 
manufacturing purposes owing to their advantageous bio-
functionality. For example, a gelatin-based hydrogel system 
for the bioactive delivery of vascular endothelial growth fac-
tor has been established by assessing AKT phosphoryla-
tion in Schwann cells.56 However, applications employing 
gelatin methacrylate hydrogels are presently limited by their 
low mechanical strength.57 A new tactic based on gelatin 
scaffolds for tissue transplantation in order to repair neural 
tissue injuries should be examined and developed. Accord-
ingly, the gelatin methacrylate-based hydrogel-cell combina-
tions might play a significant role in repairing neural tissue 
injuries, which could speed up the improvement of clinically 
relevant applications.57 In addition, combination therapy us-
ing polycaprolactone/gelatin scaffolds has the potential to 
repair the injured spinal cord as well as to reduce secondary 
damage.58 For example, differentiation of endometrial stem 
cells on the scaffolds into motor neuron-like cells is of great 
value for the regeneration of injured spinal cords,58 where 
Schwann cells secrete several neurotrophic factors that are 
indispensable for neural differentiation.

An important transplantation vehicle, fibrin, can improve the 
differentiation of mesenchymal stem cells into Schwann-like 
cells and deserves further research. In fact, fibrin has shown 
great promise as a cell transplantation vehicle for the treatment 
of some types of nervous system injuries.59 The fibrin hydrogel 
can play a protective role throughout the cell transfer process 
by providing cell attachment sites and/or signals, which has 
been demonstrated as a suitable strategy for the preparation 
of neural progenitor cells with favorable outcomes.60 The con-
tinuous use of a non-neurotoxic fibrin matrix also has been 
shown to be a convenient strategy for a better transplantation 
outcome in cell delivery.60 In addition, an aligned fibrin hydro-
gel has been revealed to upregulate the expression of regen-
eration-associated genes, which also activate the PI3K/AKT 
signaling pathways in regenerated nerve cells.61 PI3K/AKT 
signaling guarantees neuronal survival and axonal growth me-
diated by several neurotrophic factors, which are stimulated 
during the process of axonal regeneration.61

Hyaluronan-based hydrogels are among the most prom-
ising neural tissue engineering materials because of their 
biocompatibility and the immunomodulation capabilities of 
their degradation byproducts.62 For instance, hyaluronic 
acid is an abundant extracellular matrix component in soft 
tissues throughout the body and has found wide adoption in 
tissue engineering.63 Moreover, multimodular microfilaments 
with hyaluronic acid are effective in promoting directed axon 
growth and regeneration in the nervous system.64 Further-
more, an injectable and bioresorbable hydrogel blend of hy-
aluronan and methylcellulose can improve the distribution, 
viability, and functional repair of neural stem and progenitor 
cells.65 Additionally, high-molecular-weight hyaluronan can 
transduce the signal for the PI3K/AKT pathway.66 It also has 
been shown that hyaluronan is an excellent cell scaffold to 
improve the treatment efficiency of mesenchymal stem cells, 
and the therapeutic mechanism is through activation of the 

PI3K/AKT pathway.67

PEG-based hydrogels are used widely in exploratory tis-
sue engineering applications. PEG and hyaluronan deriv-
ative-crosslinked hydrogels are nontoxic towards primary 
Schwann cells and are tunable to soft tissues such as those 
found in the central and/or peripheral nervous system.68 Ad-
ditive manufacturing to the crosslinked hydrogels offers scaf-
fold morphologies biocompatible to that of primary Schwann 
cells.69 In addition to a significant increase in functional re-
covery in mice, axon elongation and/or remyelination have 
been observed with the use of a PEG tube for a cell delivery 
platform.70 In addition, PEG-based hydrogels can be engi-
neered for the alignment of nerve cells in a three-dimension-
al manner, which results in linear neurite extension for the 
treatment of acute spinal cord injuries.71 Moreover, multiarm 
thiolated PEG hydrogels can effectively improve the prolifer-
ation of mesenchymal stem cells via the PI3K/AKT/glycogen 
synthase kinase-3 beta signaling pathway.72

Perspectives
It has been shown that blocking the PI3K/AKT/mTOR path-
way worsens neuronal damage in the primary culture of 
cortical neurons.73 Consistently, mesenchymal stem cell 
transplantation successfully repaired the function of motor 
neurons after spinal cord injury by activating the PI3K/AKT/
mTOR pathway.73 Also, exosome-loaded electroconduc-
tive hydrogels have been shown to synergistically enhance 
oligodendrocyte differentiation of neural stem cells and in-
crease axon outgrowth via the PI3K/AKT/mTOR signaling 
pathway.74 Moreover, to cure spinal cord injury, it is critical to 
achieve an anti-inflammatory microenvironment through the 
PI3K/AKT/mTOR signaling pathway.75 Therefore, by reduc-
ing early inflammation, myelin-associated axonal regenera-
tion can be promoted to recovery after nerve injury. In partic-
ular, certain scaffolds have been shown to enhance neuronal 
and/or oligodendrocyte differentiation of neuronal stem cells, 
which promote the elongation of axons via modulation of the 
PI3K/AKT/mTOR pathway. Consequently, PI3K/AKT/mTOR 
signaling has been demonstrated to encourage the trans-
plantation of mesenchymal stem cells through neuroprotec-
tive and/or immunomodulatory activity.76 The combination 
of mesenchymal stem cells and Schwann cells appears to 
represent a promising therapeutic vision. In particular, the 
interaction between stem cells and supporting cells appears 
to be crucial for neural regeneration.77 However, the dif-
ferentiation of mesenchymal stem cells into neuronal and/
or glial cells still remains an issue of discussion. Interest-
ingly, mesenchymal stem cells derived from different tissues 
including the umbilical cord, bone marrow, and/or adipose 
tissue can be induced into Schwann-like cells under special 
conditions.78 In addition, the possibility of creating neural 
guidance conduits through connecting collagen hydrogel to 
Schwann-like cells with significant therapeutic potentials has 
been demonstrated to facilitate the functional recovery and 
axonal regeneration of rat facial nerves.79 An advantage of 
the use of mesenchymal stem cells is their ease of isolation 
from multiple sources.

As for corneal injury, it has been shown that sodium hya-
luronate in eye drops may provide a promising treatment 
for superficial corneal abrasion caused by mechanical dam-
age.80 This makes sense because hyaluronate can support 
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bioscaffolds for better neuroregeneration, as shown in Figure 
3. Likewise, metformin and/or resveratrol can promote the 
recovery of corneal injuries because they can improve au-
tophagy (Fig. 2). In fact, the efficacy of metformin eye drops 
against the alkali-induced corneal neovascularization model 
has been reported.81 Furthermore, metformin can also pro-
tect against retinal injury through mitochondrial fusion and 
reduced reactive oxygen species generation.82 Resveratrol 
also has been shown to be protective against ischemia-
reperfusion injury in the murine eye/retina.83 The process of 
neuroregeneration is rather complicated due to the intricate 
communication between neuronal cells and glial cells. Wide-
spread strategies that target different pathological process-
es might produce a better response with respect to neural 
regeneration. Future research should focus on the roles of 
the PI3K/AKT signaling pathway in different glial cells under 
physiological and/or pathological conditions. All efforts would 
support the development of novel therapeutic strategies. In 
particular, understanding of the molecular mechanisms that 
can direct the process of myelin sheath formation might also 
be important to speed up the development of therapeutics 
with certain bioscaffolds for neural regeneration.
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